
The original paraphernalia for the lottery had been lost long ago,
and the black box now resting on the stool had been put into use
even before Old Man Warner, the oldest man in town, was born.
Mr. Summers spoke frequently to the villagers about making a
new box, but no one liked to upset even as much tradition as was
represented by the black box. There was a story that the present
box had been made with some pieces of the box that had pre-
ceded it, the one that had been constructed when the first people
settled down to make a village here. Every year, after the lottery,
Mr. Summers began talking again about a new box, but every year
the subject was allowed to fade off without anything’s being done.
The black box grew shabbier each year: by now it was no longer
completely black but splintered badly along one side to show the
original wood color, and in some places faded or stained.

—Shirley Jackson, The Lottery (1948)

Chapter 8

Sparsest shift interpolation

The interpolation algorithms presented in Chapter 7 produce a representation of the un-
known f ∈ R[x ] as a sparse polynomial in the standard power basis 1,x ,x 2, . . .. Here we con-
sider instead interpolation in the shifted power basis 1, (x − α), (x − α)2, . . ., for some α ∈ R.
This is useful because even polynomials with many nonzero coefficients in the standard ba-
sis may have very few terms in the shifted basis, for some very carefully chosen shift α. The
algorithm we present works overQ[x ] and produces the sparsest shift α, as well as the sparse
representation in the α-shifted power basis, in polynomial-time in the size of the output.

The basic idea of our algorithm was first presented at the MACIS 2007 conference (Gies-
brecht and Roche, 2007). Significant improvements to those methods were later made and
published in the journal Computational Complexity (Giesbrecht and Roche, 2010). We are
indebted to Igor Shparlinski for pointing out a few very useful references on analytic num-
ber theory that we will discuss, as well as to Erich Kaltofen and Éric Schost for sharing some

137



CHAPTER 8. SPARSEST SHIFT INTERPOLATION

pre-prints and for other useful discussions on these topics.

8.1 Background

In the last chapter, we saw that for polynomial interpolation algorithms, the choice of repre-
sentation of the output is absolutely crucial. The sparse interpolation algorithms we reviewed
computed the representation of an unknown f in the sparse representation, written as

f (x ) =b0+b1x d 1 +b2x d 2 + · · ·+bs x d s . (8.1)

In this chapter, we will present a new algorithm that instead interpolates into the sparse
representation in the α-shifted power basis as in

f (x ) = c0+ c1(x −α)e1 + c2(x −α)e2 + · · ·+ c t (x −α)et . (8.2)

With f as in (8.2), we say that α is a t -sparse shift of f because the representation has ex-
actly t non-zero and non-constant terms in this basis. Whenα is chosen so that t is absolutely
minimal in (8.2), we call this the sparsest shift of f .

8.1.1 Previous results

The most significant challenge here is computing the sparsest shift α ∈ Q. Computing this
value from a set of evaluation points was stated as an open problem by Borodin and Tiwari
(1991). Actually, their problem concerned the decidability of the problem for an unchosen
set of evaluation points. This question is still open; all algorithms that we know of for sparse
interpolation require a black box for evaluation so that the interpolated points can be chosen
by the algorithm, and we do not depart from this general approach.

Grigoriev and Karpinski (1993) presented the first non-trivial algorithm to compute the
sparsest shift of a polynomial. Their algorithm actually computes the sparsest shift from a
black box for evaluation, but the complexity of the method is greater than the cost of dense
interpolation. Therefore without loss of generality we can assume for their problem that the
dense representation of f is known in advance, and they show how to compute the sparsest
shift α of f . The authors admit that their algorithm’s dependence on the degree is probably
not optimal. Our result confirms this by giving a sparsest-shift interpolation whose cost is
polynomial in the logarithm of the degree.

A more efficient algorithm to compute the sparsest shift of a polynomial given in the dense
representation was developed by Lakshman and Saunders (1996). Although our method is
entirely different, we crucially rely on their theorem on the uniqueness and rationality of the
sparsest shift (Fact 8.1 below).

Using the early interpolation version of Ben-Or and Tiwari’s interpolation algorithm from
Kaltofen and Lee (2003), but treating f (x+α) as a polynomial with indeterminate coefficients,
Giesbrecht, Kaltofen, and Lee (2003) give even more efficient algorithms for computing the
sparsest shift of a given polynomial.
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In all these cases, the size of the output in the sparsest-shifted representation could be
exponentially smaller than the size of the input, represented in the standard power basis. To
see that this is true, one need only polynomials such as f (x ) = (x + 1)n . The sparsest-shifted
representation size of this polynomial is proportional to log n , but the size using the standard
power basis — even in the sparse representation — is proportional to n itself.

This motivates our problem of computing the sparsest shift directly from a black box for
evaluating f at chosen points, avoiding the need to ever write down f in the standard power
basis. Surprisingly, even though we are solving a seemingly more difficult problem, the cost of
our new algorithm is competitive with the previous results just mentioned, as we will discuss
later.

8.1.2 Problem statement and black box model

We present new algorithms to interpolate f ∈ Q[x ], given a black box for evaluation, in time
proportional to the size of the sparsest-shift representation corresponding to (8.2).

The black box model we use is somewhat different from those of the previous chapter:

p ∈N,θ ∈Fp
- - f (θ )mod p

f (x )∈Q[x ]

Given a prime p and an element θ in Fp , the black box computes the value of the unknown
polynomial evaluated at θ over the fieldZp . (An error is produced exactly in those unfortunate
circumstances that p divides the denominator of f (θ ).) We generally refer to this as a modular
black box. To account for the reasonable possibility that the cost of black box calls depends on
the size of p , we define κ to be an upper bound on the number of field operations in Fp used
in black box evaluation, for a given polynomial f ∈Q[x ]. As with the remainder black box, our
motivation for this definition really comes from the idea of an algebraic circuit for f . Given
such a circuit (overQ), we could easily construct our modular black box, and the parameter κ
would correspond to the size of the circuit (which was called ` in the previous chapter).

Some kind of extension to the standard black box, such as the modular black box pro-
posed here, is in fact necessary, since the value of a polynomial of degree n at any point other
than 0,±1 will typically have n bits or more. Thus, any algorithm whose complexity is pro-
portional to log n cannot perform such an evaluation over Q or Z. Other possibilities might
include allowing for evaluations on the unit circle in some representation of a subfield of C,
or returning only a limited number of bits of precision for an evaluation. A similar model and
approach to ours is employed by Bläser, Hardt, Lipton, and Vishnoi (2009) for deterministic
identify testing of polynomials.

To be precise about our notion of size, we extend the definition of size( f ) from Chapter 6
to cover shifted-sparse polynomials. Recall that size(q ) for q ∈ Q is the number of machine
words needed to represent q in an IMM. So if we write q = a

b
with a ∈Z, b ∈N, and gcd(a ,b ) =
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1, and if the machine word size is w , then size(q ) = dlog2(|a |+1)/w e+ dlog2(b +1)/w e+1. For
a rational polynomial f as in (8.2), define:

size( f ) = size(α)+
t
∑

i=0

size(c i )+
t
∑

i=1

size(e i ). (8.3)

The upper bound we will use for simplicity is:

size( f )≤ size(α)+ t
�

H ( f )+ size(n )
�

, (8.4)

where H ( f ) is defined as max0≤i≤t size(c i ). Also, recall as in previous chapters that M(r ) is
the cost in ring operations of a dense degree-r multiplication, and N(a ) is the cost in word
operations on an IMM of computing the product of two integers, both with absolute value at
most a .

Our algorithms will have polynomial complexity in the smallest possible size( f ).

The remainder of this chapter is structured as follows. In Section 8.2 we show how to find
the sparsest shift from evaluation points in Fp , where p is a prime with some special proper-
ties provided by some “oracle”. In Section 8.3 we show how to perform sparse interpolation
given a modular black box for a polynomial. In Section 8.4 we show how to generate primes
such that a sufficient number satisfy the conditions of our oracle, and discuss the effect of
some number-theoretic conjectures on our algorithms. Section 8.5 provides the complexity
analysis of our algorithms. We conclude in Section 8.6, and introduce some open questions.

8.2 Computing the Sparsest Shift

For a polynomial f ∈Q[x ], we first focus on computing the sparsest shiftα∈Q so that f (x+α)
has a minimal number of non-zero and non-constant terms. This information will later be
used to recover a representation of the unknown polynomial.

8.2.1 The polynomial f (p)

Here, and for the remainder of this paper, for a prime p and f ∈ Q[x ], define f (p ) ∈ Fp [x ] to
be the unique polynomial with degree less than p which is equivalent to f modulo x p − x
and with all coefficients reduced modulo p . Observe that this is very similar to what could be
produced by the remainder black box of Chapter 7, but not quite the same. The key difference
is that we simultaneously reduce the coefficients and the polynomial itself. Essentially, the
remainder black box allows us to work in larger domains (when the unknown polynomial has
coefficients in finite fields, for example), whereas our modular black box here allows us to
work in the smaller domain of integers modulo p .

From Fermat’s Little Theorem, we see immediately that f (p )(α)≡ f (α)mod p for all α∈Fp .
Hence f (p ) can be found by evaluating f at each point 0, 1, . . . , p−1 modulo p and using dense
interpolation over Fp [x ].
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Notice that, over Fp [x ], (x −α)p ≡ x −α mod x p −x , and therefore (x −α)e i ≡ (x −α)k for
any k 6= 0 such that e i ≡ k mod (p−1). The smallest such k is in the range {1, 2, . . . , p}; we now
define this with some more notation. For a ∈ Z and positive integer m , define a rem1 m to
be the unique integer in the range {1, 2, . . . , m } which is congruent to a modulo m . As usual,
a rem m denotes the unique congruent integer in the range {0, 1, . . . , m −1}.

If f is as in (8.2), then by reducing term-by-term we can write

f (p )(x ) = (c0 rem p )+
t
∑

i=1

(c i rem p )(x −αp )e i rem1(p−1), (8.5)

where αp is defined as αrem p . Hence, for some k ≤ t , αp is a k -sparse shift for f (p ). That is,
the polynomial f (p )(x +αp ) over Fp [x ] has at most t non-zero and non-constant terms.

Computing f (p ) from a modular black box for f is straightforward. First, use p black-box
calls to determine f (i )rem p for i = 0, 1, . . . , p − 1. Recalling that κ is the number of field
operations in Fp for each black-box call, the cost of this step is O(pκN(p )) word operations.
Second, we use the well-known divide-and-conquer method to interpolate f (p ) into the dense
representation (see, e.g., Borodin and Munro, 1975, Section 4.5). Since deg f (p ) < p , this step
can be performed in O(p log2 p N(p ))word operations.

Furthermore, for any α ∈ Fp , the dense representation of f (p )(x +α) can be computed in
exactly the same way as the second step above, simply by shifting the indices of the already-
evaluated points by α. This immediately gives a naïve algorithm for computing the sparsest
shift of f (p ): compute f (p )(x + γ) for γ = 0, 1, . . . , p − 1, and return the γ that minimizes the
number of non-zero, non-constant terms. The cost in word operations of this approach is
O(p 2 log2 p N(p )), which for our applications will often be less costly than the more sophisti-
cated approaches of, e.g., Lakshman and Saunders (1996) or (Giesbrecht et al., 2003), precisely
because p will not be very much larger than deg f (p ).

8.2.2 Overview of Approach

We will make repeated use of the following fundamental theorem from Lakshman and Saun-
ders (1996):

Fact 8.1. Let F be an arbitrary field and f ∈ F[x ], and suppose α ∈ F is such that f (x +α) has t
non-zero and non-constant terms. If deg f ≥ 2t +1 then α is the unique sparsest shift of f .

From this we can see that, if α is the unique sparsest shift of f , then αp = αrem p is the
unique sparsest shift of f (p ) provided that deg f (p ) ≥ 2t +1. This observation provides the basis
for our algorithm.

The input to the algorithms will be a modular black box for evaluating a rational polyno-
mial, as described above, and bounds on the maximal size of the unknown polynomial. Note
that such bounds are a necessity in any type of black-box interpolation algorithm, since oth-
erwise we could never be sure that the computed polynomial is really equal to the black-box
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function at every point. Specifically, we require BA , BT , BH , BN ∈N such that

size(α)≤ BA ,

t ≤ BT ,

size(c i )≤ BH , for 0≤ i ≤ t ,

size(n )≤ BN .

By considering the following polynomial:

c (x −α)n +(x −α)n−1+ · · ·+(x −α)n−t+1,

we see that these bounds are independent — that is, none is polynomially-bounded by the
others — and therefore are all necessary.

We are now ready to present the algorithm for computing the sparsest shift α almost in its
entirety. The only part of the algorithm left unspecified is an oracle which, based on the values
of the bounds, produces primes to use. We want primes p such that deg f (p ) ≥ 2t + 1, which
allows us to recover one modular image of the sparsest shift α. But since we do not know the
exact value of t or the degree n of f over Q[x ], we define some prime p to be a good prime
for sparsest shift computation if and only if deg f (p ) ≥min{2BT + 1, n}. For the remainder of
this section, “good prime” means “good prime for sparsest shift computation.” Our oracle
indicates when enough primes have been produced so that at least one of them is guaranteed
to have been a good prime, which is necessary for the procedure to terminate. The details of
how to construct such an oracle will be considered in Section 8.4.

Our algorithm for computing the sparsest shift is presented in Algorithm 8.1.

Theorem 8.2. With inputs as specified, Algorithm 8.1 correctly returns a sparsest shift α of f .

Proof. Let f , BA , BT , BH , BN be the inputs to the algorithm, and suppose t ,α are as specified
in (8.2).

First, consider the degenerate case where n ≤ 2BT , i.e., the bound on the sparsity of the
sparsest shift is at least half the actual degree of f . Then, since each f (p ) can have degree
at most n (regardless of the choice of p ), the condition of Step 6 will never be true. Hence
Steps 10–14 will eventually be executed. The size of coefficients over the standard power basis
is bounded by 2BT BA + BH since deg f ≤ 2BT , and therefore f will be correctly computed on
Step 5. In this case, Fact 8.1 may not apply, i.e., the sparsest shift may not be unique, but the
algorithms from Giesbrecht et al. (2003) will still produce a sparsest shift of f .

Now suppose instead that n ≥ 2BT +1. The oracle eventually produces a good prime p , so
that deg f (p ) ≥ 2BT +1. Since t ≤ BT and f (p ) has at most t non-zero and non-constant terms
in the (αrem p )-shifted power basis, the value computed as αp on Step 8 is exactly αrem p , by
Fact 8.1. The value of P will also be set to p > 1 here, and can only increase. So the condition
of Step 10 is never true. Since the numerator and denominator of α are both bounded above
by 2BA , we can use rational reconstruction to compute α once we have the image modulo P
for P ≥ 2α2. Therefore, when we reach Step 15, we have enough images αp to recover and
return the correct value of α.
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Algorithm 8.1: Computing the sparsest shift

Input: A modular black box for an unknown polynomial f ∈Q[x ], bounds
BA , BT , BH , BN ∈N as described above, and an oracle which produces primes
and indicates when at least one good prime must have been produced

Output: A sparsest shift α of f .
1 P← 1, G ←;
2 while size(P)≤ 2BA +1 do
3 p ← new prime from the oracle
4 Evaluate f (i )rem p for i = 0, 1, . . . , p −1
5 Use dense interpolation to compute f (p )

6 if deg f (p ) ≥ 2BT +1 then
7 Use dense interpolation to compute f (p )(x +γ) for γ= 1, 2, . . . , p −1
8 αp ← the unique sparsest shift of f (p )

9 P← P ·p , G ←G
⋃

{p}

10 else if P = 1 and oracle indicates ≥ 1 good prime has been produced then
11 q ← least prime such that size(q )> 2BT BA + BH (computed directly)
12 Evaluate f (i )remq for i = 0, 1, . . . , 2BT

13 Compute f ∈Q[x ]with deg f ≤ 2BT by dense interpolation in Fq [x ] followed by
rational reconstruction on the coefficients

14 return A sparsest shift α computed by a univariate algorithm from Giesbrecht
et al. (2003) on input f

15 return The unique α= a/b ∈Q such that |a |,b ≤ 2BA and a ≡bαp mod p for each p ∈G ,
using Chinese remaindering and rational reconstruction
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We still need to specify which algorithm to use to compute the sparsest shift of a densely-
represented f ∈Q[x ] on Step 14. To make Algorithm 8.1 completely deterministic, we should
use the univariate symbolic algorithm from Giesbrecht et al. (2003, Section 3.1), although this
will have very high complexity. Using a probabilistic algorithm instead gives the following,
which follows directly from the referenced work.

Theorem 8.3. If the “two projections” algorithm of Giesbrecht et al. (2003, Section 3.3) is used
on Step 14, then Steps 10–14 of Algorithm 8.1 can be performed with

O(B 2
TM(B

4
T BA + B 3

T BH ))

word operations, plus O(κBTM(BT BA + BH ))word operations for the black-box evaluations.

The precise complexity analysis proving that the entire Algorithm 8.1 has cost polynomial
in the bounds given depends heavily on the size and number of primes p that are used, and
so must be postponed until Section 8.5.1, after our discussion on choosing primes.

Example 8.4. Suppose we are given a modular black box for the following unknown polyno-
mial:

f (x ) = x 15−45x 14+945x 13−12285x 12+110565x 11−729729x 10

+3648645x 9−14073345x 8+42220035x 7−98513415x 6+

177324145x 5−241805625x 4+241805475x 3−167403375x 2

+71743725x −14348421,

along with the bounds BA = 4, BT = 2, BH = 4, and BN = 4. Under the simplistic assumption of
single bit-length words, i.e., w = 1, one may easily confirm that f (x ) = (x −3)15−2(x −3)5, and
hence these bounds are actually tight.

Now suppose the oracle produces p = 7 in Step 3. We use the black box to compute each
f (0), f (1), . . . , f (6) in F7, and dense interpolation to compute

f (7)(x ) = 5x 5+2x 4+3x 3+6x 2+x +4.

Since deg f (7) = 5 ≥ 2BT + 1, we move on to Step 8 and compute each f (7)(x + γ) with γ =
1, 2, . . . , 6. Examining these, we see that f (7)(x +3) = 5x 5+x 3 has the fewest non-zero and non-
constant terms, and so setα7 to 3 on Step 8. This means the sparsest shift must be congruent to 3
modulo 7. This provides a single modular image for use in Chinese remaindering and rational
reconstruction on Step 15, after enough successful iterations for different primes p .

8.2.3 Conditions for Success

We have seen that, provided deg f > 2BT , a good prime p is one such that deg f (p ) > 2BT . The
following theorem provides (quite loose) sufficient conditions on p to satisfy this require-
ment.

144



CHAPTER 8. SPARSEST SHIFT INTERPOLATION

Theorem 8.5. Let f ∈ Q[x ] as in (8.2) and BT ∈ N such that t ≤ BT . Then, for some prime p ,
the degree of f (p ) is greater than 2BT whenever the following hold:

• c t 6≡0 mod p ;

• ∀i ∈ {1, 2, . . . , t −1}, e t 6≡ e i mod (p −1);

• ∀i ∈ {1, . . . , 2BT }, e t 6≡ i mod (p −1).

Proof. The first condition guarantees that the last term of f (p )(x ) as in (8.5) does not vanish.
We also know that there is no other term with the same degree from the second condition.
Finally, the third condition tells us that the degree of the last term will be greater than 2BT .
Hence the degree of f (p ) is greater than 2BT .

For purposes of computation it will be convenient to simplify the above conditions to two
non-divisibility requirements, on p and p −1 respectively:

Corollary 8.6. Let f , BT , BH , BN be as in the input to Algorithm 8.1 with deg f > 2BT . Then
there exist C1,C2 ∈N with size(C1)≤ 2BH and size(C2)≤ BN (3BT − 1) such that deg f (p ) > 2BT

whenever p -C1 and (p −1) -C2.

Proof. Write f as in (8.2). We will use the sufficient conditions given in Theorem 8.5. Write
|c t | = a/b for a ,b ∈ N relatively prime. In order for c t rem p to be well-defined and not zero,
neither a nor b can vanish modulo p . This is true whenever p - ab . Set C1 = ab . Since
size(a ), size(b )≤ BH , size(C1) = size(ab )≤ 2BH .

Now write

C2 =
t−1
∏

i=1

(e t − e i ) ·
2BT
∏

i=1

(e t − i ).

We can see that the second and third conditions of Theorem 8.5 are satisfied whenever (p−1) -
C2. Now, since each integer e i is distinct and positive, and e t is the greatest of these, each
(e t − e i ) is a positive integer less than e t . Similarly, since e t = deg f > 2BT , each (e t − i ) in the
second product is also a positive integer less than e t . Therefore, using the fact that t ≤ BT , we
see C2 ≤ e 3BT−1

t . Furthermore, size(e t )≤ BN , so we know that size(C2)≤ BN (3BT −1).

A similar criteria for success is required in (Bläser et al., 2009), and they employ Lin-
nik’s theorem which gives a polynomial-time algorithm, with a high exponent. Linnik’s the-
orem was also employed in (Giesbrecht and Roche, 2007) to yield a much more expensive
polynomial-time algorithm for finding sparse shifts than the one presented here.
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8.3 Interpolation

Once we know the value of the sparsest shift α of f , we can trivially construct a modular black
box for the t -sparse polynomial f (x +α) using the modular black box for f . Therefore, for the
purposes of interpolation, we can assume α = 0, and focus only on interpolating a t -sparse
polynomial f ∈Q[x ] given a modular black box for its evaluation.

The approach we use is very similar to the techniques of the previous chapter, except that
the modular black box differs from a remainder black box in a subtle way, that the coefficients
and the exponents are both reduced (although not modulo the same integer!). This complica-
tion makes our analysis much more involved here. Also, the fact that we must use very small
primes means that the diversification techniques of Chapter 7 will not work.

For convenience, we restate the notation for f and f (p ), given a prime p :

f = c0+ c1x e1 + c2x e2 + · · ·+ c t x et , (8.6)

f (p ) = (c0 rem p )+ (c1 rem p )x e1 rem1(p−1)+ · · ·+(c t rem p )x et rem1(p−1). (8.7)

Again, we assume that we are given upper bounds BH , BT , and BN on maxi size(c i ), t , and
size(deg f ), respectively. We also re-introduce the notation τ( f ), which as in previous sec-
tions is defined to be the number of distinct non-zero, non-constant terms in the univariate
polynomial f .

This algorithm will again use the polynomials f (p ) for primes p , but now rather than a
degree condition, we need f (p ) to have the maximal number of non-constant terms. So we
define a prime p to be a good prime for interpolation if and only if τ( f (p )) = t . Again, the term
“good prime” refers to this kind of prime for the remainder of this section.

Now suppose we have already used modular evaluation and dense interpolation (as in Al-
gorithm 8.1) to recover the polynomials f (p ) for k distinct good primes p1, . . . , pk . We therefore
have k images of each exponent e i modulo (p1− 1), . . . , (pk − 1). Write each of these polyno-
mials as:

f (p i ) = c (i )0 + c (i )1 x e (i )1 + · · ·+ c (i )t x e (i )t . (8.8)

Note that it is not generally the case that e (i )j = e j rem1(p i −1). Because we don’t know how to
associate the exponents in each polynomial f (p i ) with their pre-image in Z, a simple Chinese
remaindering on the exponents will not work. Possible approaches are provided by (Kaltofen,
1988), (Kaltofen, Lakshman, and Wiley, 1990) or (Avendaño, Krick, and Pacetti, 2006). How-
ever, the most suitable approach for our purposes is the clever technique of (Garg and Schost,
2009), based on ideas of Grigoriev and Karpinski (1987), as we saw in the previous chapter.
We interpolate the polynomial

g (z ) = (z − e1)(z − e2) · · · (z − e t ), (8.9)

whose coefficients are symmetric functions in the e i ’s. Given f (p i ), we have all the values of
e (i )j rem1(p i − 1) for j = 1, . . . , t ; we just don’t know the order. But since g is not dependent on
the order, we can compute g mod (p i −1) for i = 1, . . . , k , and then find the roots of g ∈Z[x ] to
determine the exponents e1, . . . , e t . Of course, this is exactly the step that our diversification
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technique avoided in the last chapter, but again this is not possible in this case because the
primes p that we use are too small.

Once we know the exponents, we recover the coefficients from their images modulo each
prime. The correct coefficient in each f (p ) can be identified because the residues of the expo-
nents modulo p − 1 are unique, for each chosen prime p . This approach is made explicit in
the following algorithm.

Algorithm 8.2: Sparse Polynomial Interpolation overQ[x ]
Input: A modular black box for unknown f ∈Q[x ], bounds BH and BN as described

above, and an oracle which produces primes and indicates when at least one
good prime must have been returned

Output: f ∈Q[x ] as in (8.6)
1 Q← 1, P← 1, k ← 1, t ← 0
2 while size(P)≤ 2BH +1 or size(Q)< BN

3 or the oracle does not guarantee a good prime has been produced do
4 pk ← new prime from the oracle
5 Compute f (pk ) by black box calls and dense interpolation
6 if τ( f (pk ))> t then
7 Q← pk −1, P← pk , t ←τ( f (pk )), p1← pk , f (p1)← f (pk ), k ← 2

8 else if τ( f (pk )) = t then
9 Q← lcm(Q , pk −1), P← P ·pk , k ← k +1

10 for i ∈ {1, . . . , k −1} do
11 g (p i )←

∏

1≤j≤t (z − e (i )j ) mod p i −1

12 Construct g = a 0+a 1z +a 2z 2+ · · ·+a t z t ∈Z[x ] such that g ≡ g (p i ) mod p i −1 for
1≤ i < k , by Chinese remaindering

13 Factor g as (z − e1)(z − e2) · · · (z − e t ) to determine e1, . . . , e t ∈Z
14 for 1≤ i ≤ t do
15 for 1≤ j ≤ k do
16 Find the exponent e (j )`j

of f (p j ) such that e (j )`j
≡ e i mod p j −1

17 Reconstruct c i ∈Q by Chinese remaindering from residues c (1)`1
, . . . , c (k )`k

18 Reconstruct c0 ∈Q by Chinese remaindering from residues c (1)0 , . . . , c (k )0

The following theorem follows from the above discussion.

Theorem 8.7. Algorithm 8.2 works correctly as stated.

Again, this algorithm runs in polynomial time in the bounds given, but we postpone the
detailed complexity analysis until Section 8.5.2, after we discuss how to choose primes from
the “oracle”. Some small practical improvements may be gained if we use Algorithm 8.2 to
interpolate f (x+α) after running Algorithm 8.1 to determine the sparsest shift α, since in this
case we will have a few previously-computed polynomials f (p ). However, we do not explicitly
consider this savings in our analysis, as there is not necessarily any asymptotic gain.
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Now we just need to analyze the conditions for primes p to be good. This is quite similar
to the analysis of the sparsest shift algorithm above, so we omit many of the details here.

Theorem 8.8. Let f , BT , BH , BN be as above. There exist C1,C2 ∈N with size(C1)≤ 2BH BT and
size(C2)≤ 1

2
BN BT (BT −1) such that τ( f (p )) is maximal whenever p -C1 and (p −1) -C2.

Proof. Let f be as in (8.6), write |c i |= a i/b i in lowest terms for i = 1, . . . , t , and define

C1 =
t
∏

i=1

a i b i , C2 =
t
∏

i=1

t
∏

j=i+1

(e j − e i ).

Now suppose p is a prime such that p - C1 and (p − 1) - C2. From the first condition, we
see that each c i mod p is well-defined and nonzero, and so none of the terms of f (p ) vanish.
Furthermore, from the second condition, e i 6≡ ek mod p − 1 for all i 6= j , so that none of the
terms of f (p ) collide. Therefore f (p ) contains exactly t non-constant terms. The bounds on C1

and C2 follow from the facts that each size(a i ), size(b i )≤ BH and each difference of exponents
(e j − e i ) has size at most BN .

8.4 Generating primes

We now turn our attention to the problem of generating primes for the sparsest shift and
interpolation algorithms. We first present our algorithm for generating suitable primes, and
we make use of powerful results from analytic number theory to estimate its running time.
However, experience suggests that the true complexity of our algorithm is even better than we
can prove. We briefly examine some related mathematical problems and indications towards
the true cost of our method.

8.4.1 Prime generation algorithm

Recall that the algorithms above for sparsest shift computation and interpolation assumed we
had an “oracle” for generating good primes, and indicating when at least one good prime must
have been produced. We now present an explicit and analyzed algorithm for this problem.

The definition of a “good prime” is not the same for the algorithms in Section 8.2 and Sec-
tion 8.3. However, Corollary 8.6 and Theorem 8.8 provide a unified presentation of sufficient
conditions for primes being “good”. Here we call a prime which satisfies those sufficient con-
ditions a useful prime. So every useful prime is good (with the bounds appropriately specified
for the relevant algorithm), but some good primes might not be useful.

We first describe a set P of primes such that the number and density of useful primes
within the set is sufficiently high. We will assume that there exist numbers C1,C2, and useful
primes p are those such that p -C1 and (p−1)-C2. The numbers C1 and C2 will be unknown, but
we will assume we are given bounds β1, β2 such that log2 C1 ≤ β1 and log2 C2 ≤ β2. Suppose
we want to find ` useful primes. We construct P explicitly, of a size guaranteed to contain
enough useful primes, then enumerate it.
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The following fact is immediate from (Mikawa, 2001), though it has been somewhat sim-
plified here, and the use of (unknown) constants is made more explicit. This will be important
in our computational methods.

For q ∈Z, let S(q ) be the smallest prime p such that q | (p −1).

Fact 8.9 (Mikawa 2001). There exists a constant µ > 0, such that for all n > µ, and for all
integers q ∈ {n , . . . , 2n}with fewer than µn/ log2 n exceptions, we have S(q )<q 1.89.

Our algorithms for generating useful primes require explicit knowledge of the value of the
constant µ in order to run correctly. So we will assume that we know µ in what follows. To get
around the fact that we do not, we simply start by assuming that µ= 1, and run any algorithm
depending upon it. If the algorithm fails we simply double our estimate for µ and repeat.
At most a constant number of doublings is required. We make no claim this is particularly
practical.

For convenience we define

Υ(x ) =
3x

5 logx
−
µx

log2 x
.

Theorem 8.10. Let log2 C1 ≤ β1, log2 C2 ≤ β2 and ` be as above. Let n be the smallest integer
such that n > 21, n >µ and Υ(n )>β1+β2+ `. Define

Q = {q prime : n ≤q < 2n and S(q )<q 1.89}, P = {S(q ) : q ∈Q}.

Then the number of primes inP is at least β1+β2+ `, and the number of useful primes inP ,
such that p -C1 and (p − 1) -C2, is at least `. For all p ∈ P we have p ∈ O((β1 + β2 + `)1.89 ·
log1.89(β1+β2+ `)).

Proof. By (Rosser and Schoenfeld, 1962), the number of primes between n and 2n is at least
3n/(5 log n ) for n ≥ 21. Applying Fact 8.9, we see #Q ≥ 3n/(5 log n )− µn/ log2 n when n ≥
max{µ, 21}. Now suppose S(q1) =S(q2) for q1,q2 ∈Q. If q1 <q2, then S(q1)>q 2

1 , a contradiction
with the definition ofQ. So we must have q1 =q2, and hence

#P = #Q ≥Υ(n )>β1+β2+ `.

We know that there are at most log2 C1 ≤ β2 primes p ∈P such that p |C1. We also know that
there are at most log2 C2 ≤ β2 primes q ∈Q such that q |C2, and hence at most log2 C2 primes
p ∈P such that p =S(q ) and q | (p −1) |C1. Thus, by constructionP contains at most β1+β2

primes that are not useful out of β1+β2+ ` total primes.

To analyze the size of the primes in P , we note that to make Υ(n ) > β1+β2+ `, we have
n ∈Θ((β1+β2+`) · log(β1+β2+`)) and each q ∈Q satisfies q ∈O(n ). Elements ofP will be of
magnitude at most (2n )1.89 and hence p ∈O((β1+β2+ `)1.89 log1.89(β1+β2+ `)).

Given β1, β2 and ` as above (where log2 C1 ≤ β1 and log2 C2 ≤ β2 for unknown C1 and C2),
we generate the primes inP as follows.

Start by assuming that µ= 1, and compute n as the smallest integer such thatΥ(n )>β1+
β2+ `, n ≥ µ and n ≥ 21. List all primes between n and (2n )1.89 using a Sieve of Eratosthenes,
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and store these primes in a data structure that allows constant-time membership queries. For
instance, we could simply use a length-(2n )1.89 bit array where the i th bit is set iff i is prime.
In practice, it would be more efficient to use a hash table for this purpose.

For each prime q between n and 2n , determine S(q ), if it is less than q 1.89, by simply check-
ing if kq + 1 is prime for k = 1, 2, . . . ,

�

q 0.89
�

. If we find a prime p = S(q ) < q 1.89, add p to P .
This is repeated until P contains β1 + β2 + ` primes. If we are unable to find this number
of primes, we have underestimated µ (since Theorem 8.10 guarantees their existence), so we
double µ and restart the process. Obviously in practice we would not redo primality tests
already performed for smaller µ, so really no work need be wasted.

Theorem 8.11. For log2 C1 ≤ β1, log2 C2 ≤ β2, `, and n as in Theorem 8.10, we can generate
β1+β2+ ` elements ofP with

O((β1+β2+ `)1.89 · log1.89(β1+β2+ `) · logloglog(β1+β2+ `))

word operations. At least ` of the primes inP will be useful.

Proof. The method and correctness follows from the above discussion. The Sieve of Eratos-
thenes can be run with O(n 1.89 logloglog n ) bit operations (see Knuth, 1981, §4.5.4), including
the construction of the bit-array as described above. Each primality test of kq + 1 then takes
constant time, and there are at most n 1.89 such tests. Since

n ∈O((β1+β2+ `) · log(β1+β2+ `)),

the stated complexity follows.

8.4.2 Using smaller primes

The analysis of our methods will be significantly improved when more is discovered about the
behavior of the least prime congruent to one modulo a given prime, which we have denoted
S(q ). This is a special case of the more general question of the least prime in an arbitrary
arithmetic progression, a well-studied problem in the mathematical literature. Recall from
Section 1.4 that Linnik’s theorem guarantees us that S(q )� qC for some constant C . A series
of results has sought explicit bounds for C , with the most recent progress by Xylouris (2009)
giving C ≤ 5.2.

Assuming the extended Riemann hypothesis (ERH), this can be reduced unconditionally
to S(q )� q 2 ln2 q , as reported by Bach (1990) and Heath-Brown (1992). The result of Mikawa
(2001) that we employed above is even stronger, and does not require the ERH. However, recall
that Mikawa’s bound of S(q )� q 1.89 is not shown to hold for all q , and this is why we had to
handle exceptions.

What is the true asymptotic behaviour of S(q )? No one knows for certain, but it seems that
the answer is S(q ) ∼ q ln2 q . Granville and Pomerance (1990) conjecture this as an asymp-
totic lower bound for S(q ), and earlier Heath-Brown (1978) conjectured a upper bound of the
same form. Today this is known as Wagstaff’s conjecture, after the more general statement
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by Wagstaff (1979), which was also supported by an extensive (at that time) computational
search, confirming the conjecture for q < 106. He also gave a heuristic argument that this
should be the true asymptotic growth rate of the least prime in arithmetic progressions.

We conducted our own computational search to investigate the size of S(q ) and have
found that S(q ) < 2q ln2 q for all primes q such that 2q ln2 q < 264 — that is, all q for which
S(q ) fits in a 64-bit machine word. As a point of reference, this limit is approximately q < 1016.
In fact, this search was the original motivation for some of the tricks in modular arithmetic
discussed in Chapter 2. Our computation also used the result of Jaeschke (1993) which shows
that only 9 Miller-Rabin trials are necessary to deterministically check primality for integers
of this size.

The results of our computational search make a strong statement about the true complex-
ity of our algorithms. On machines with at most 64-bit words (which is to say, nearly any
modern computer), our algorithms cannot possibly use primes p larger than 264, since in this
case the dense polynomial f (p ) would not fit into addressable memory. (Recall the lengthy
discussion of word-size in the IMM model from Chapter 1.) This means that, at least on mod-
ern hardware, the true cost of our algorithms will be given by assuming S(q ) ∈O(q log2 q ). In
any case, the actual cost of the algorithms discussed — on any machine — will be a reflection
of the true behavior of S(q ), even before it is completely understood by us.

Even more improvements might be possible if this rather complicated construction is
abandoned altogether, as useful primes would naturally seem to be relatively plentiful. In
particular, one would expect that if we randomly choose primes p directly from a set which
has, say, 4(β1+β2+ `) primes, we might expect that the probability that p |C1 or (p −1) |C2 to
less than, say, 1/4. Proving this directly appears to be difficult. Perhaps most germane results
to this are lower bounds on the Carmichael Lambda function (which for the product of dis-
tinct primes p1, . . . , pm is the LCM of p1−1, . . . , pm −1), which are too weak for our purposes.
See (Erdös, Pomerance, and Schmutz, 1991).

8.5 Complexity analysis

We are now ready to give a formal complexity analysis for the algorithms presented in Sec-
tion 8.2 and Section 8.3. For all algorithms, the complexity is polynomial in the four bounds
BA , BT , BH , and BN defined in Section 8.2.2, as well as the word-size w in the IMM model.
Since these are each bounded above by size( f ), our algorithms will have polynomial com-
plexity in the size of the output if these bounds are sufficiently tight.

It may be surprising to see the word-size w appear in the complexity, so we briefly give
an intuitive explanation for this phenomenon. Recall that the bounds BA , BH , and BN above
are bounds on the number of words used to store the relevant values in the output. And
our algorithm analysis of course will count word operations. Because of this, doing integer
computations on very small integers much smaller than 2w is wasteful in some sense. That is,
in order to get the best complexity in word operations, we should always make sure to get the
most computational power out of those word operations that we can.

151



CHAPTER 8. SPARSEST SHIFT INTERPOLATION

Now observe that our algorithms will definitely be wasteful in this sense, because of the
primes p that drive the cost of the whole algorithm. We are doing many computations in the
field Fp , and so to maximize the value of word operations, we would normally want every
p to be close to the maximum value that will fit in a machine word, 2w . However, the cost
of our algorithm depends not only on the size of p , but on the value of p as well, since the
algorithm repeatedly generates dense polynomials with degrees bounded by p . So the p s
must be chosen as small as possible to avoid making the whole algorithm intractable. This
inevitably means that computations modulo p will be wasteful, and the parameter w that
appears in the complexity measures indicates the degree of this wastefulness.

As a comparative illustration, suppose we were given an instance of the long integer mul-
tiplication problem, encoded in words, but chose to operate only on bits. Then the size-n
input would have bit-length w n , and our cost (in word operations) would be proportional to
the latter value, reflecting the fact that every word operation was wasteful by only computing
with single bits. A similar phenomenon is happening here. Observe, however, that as w must
be bounded by the logarithm of the input size, the effect of factors of w in the complexity will
not be very significant.

8.5.1 Complexity of Sparsest Shift Computation

Algorithm 8.1 gives our algorithm to compute the sparsest shift α of an unknown polynomial
f ∈Q[x ] given bounds BA , BT , BH , and BN and an oracle for choosing primes. The details of
this oracle are given in Section 8.4.

To choose primes, we set `= 2BA w +1, and β1 = 2BH w and β2 = BN (3BT −1)w (according
to Corollary 8.6 and the definitions of β1,b e t a 2,` in the previous section). i For the sake of
notational brevity, define BΣ = (BA + BH + BN BT )w so that β1+β2+ `∈O(BΣ).

Theorem 8.12. Suppose f ∈Q[x ] is an unknown polynomial given by a black box, with bounds
BA ,BT ,BH , and BN given as above. If deg f > 2BT , then the sparsest shift α ∈ Q of f can be
computed deterministically using

O
�

w BA B 3.78
Σ · log5.78 BΣ

�

word operations, plus O(κB 2.89
Σ log1.89 BΣ)word operations for the black-box evaluations.

Proof. Algorithm 8.1 will always satisfy the conditions of Step 2 and terminate after 2BA w +1
good primes have been produced by the oracle.

Using the oracle to choose primes, and because β1+β2+ `∈O(BΣ),

(B 1.89
Σ · log1.89 BΣ · logloglog BΣ)

word operations are used to compute all the primes on Step 3, by Theorem 8.11. This cost
does not dominate the complexity. Also, by Theorem 8.10, each chosen p is bounded by
O(B 1.89

Σ log1.89 BΣ).
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All black-box evaluations are performed on Step 4. There are p evaluations at each iter-
ation, and O(BΣ) iterations, and observe that p < BO(1)

Σ , and we can safely assume this latter
value is word-sized, since BΣ is polynomially-related to the instance size. Therefore every op-
eration in Fp takes O(1) word operations, a total cost of O(κBΣp ) word operations. Using the
fact that p ∈O(B 1.89

Σ log1.89 BΣ) gives the stated result.

Steps 10–14 are never executed when deg f > 2BT . Step 15 is only executed once and never
dominates the complexity.

Dense polynomial interpolation over Fp is performed at most O(BΣ) times on Step 5 and
O(p ) times at each of O(w BA) iterations through Step 7. Since p � BΣ, the latter step domi-
nates. Using asymptotically fast methods, each interpolation of f (p )(x +γ) uses O(M(p ) log p )
field operations in Fp , each of which again uses just a constant number of word operations.
Also, from Chapter 1, recall that we can assume M(p ) ∈ O(p log p ) by encoding the polyno-
mials in Fp [x ] into long integers. This gives a total cost over all iterations of O(w BA p 2 log2 p )
(a slight abuse of notation here since the value of p varies). Again, using the fact that p ∈
O(B 1.89

Σ log1.89 BΣ) gives the stated result.

To simplify the discussion somewhat, consider the case that we have only a single bound
on the size of the output polynomial, say B f ≥ size( f ). By setting each of BT , BH , and BN equal
to B f , and because w ∈O(log size( f )), we obtain the following comprehensive result:

Corollary 8.13. If an unknown polynomial f ∈Q[x ] has shifted-lacunary size bounded by B f ,

then the sparsest shift α of f can be computed using O
�

B 8.56
f log10.56 B f

�

word operations, plus

O
�

κB 5.78
f log4.78 B f

�

word operations for the black-box evaluations.

Proof. The stated complexities follow directly from Theorem 8.12 above, using the fact that
BΣ ∈O(w B 2

f ). Using the single bound B f , we see that these costs always dominate the cost of
Steps 10–14 given in Theorem 8.3, and so we have the stated general result.

In fact, if we have no bounds at all a priori, we could start by setting B f to some small value
(perhaps dependent on the size of the black box or κ), running Algorithm 8.1, then doubling
B f and running the algorithm again, and so forth until the same polynomial f is computed
in successive iterations. This can then be tested on random evaluations. Such an approach
yields an output-sensitive polynomial-time algorithm which should be correct on most input,
though it could certainly be fooled into early termination.

Somewhat surprisingly, our algorithm is competitive even with the best-known sparsest
shift algorithms which require a (dense) f ∈ Q[x ] to be given explicitly as input. By care-
fully constructing the modular black box from a given f ∈ Q[x ], and being sure to set BT <
(deg f )/2, we can derive from Algorithm 8.1 a deterministic sparsest-shift algorithm with bit
complexity close to the fastest algorithms in Giesbrecht et al. (2003); the dependence on de-
gree n and sparsity t will be somewhat less, but the dependence on the size of the coefficients
size( f ) is greater.

To understand the limits of our computational techniques (as opposed to our current un-
derstanding of the least prime in arithmetic progressions) we consider the cost of our algo-
rithms under the assumption that S(q ) ∈O(q log2 q ), as discussed in the previous section. In
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this case the sparsest shift α of an unknown polynomial f ∈Q[x ], whose size in the sparsest-
shifted representation is bounded by B f , can be computed using O (̃B 5

f ) word operations. As

noted in the previous section, we have verified computationally that S(q ) ≤ 2q ln2 q for all
64-bit primes p = S(q ). This would suggest the above complexity for all sparsest-shift inter-
polation problems that we would expect to encounter.

8.5.2 Complexity of Interpolation

The complexity analysis of the sparse interpolation algorithm given in Algorithm 8.2 will be
quite similar to that of the sparsest shift algorithm above. Here, we need

`=w ·max{2BH +1, BN }

good primes to satisfy the conditions of Step 3, and from Theorem 8.8, we set β1 = 2w BH BT

and β2 = 1
2

w BN BT (BT −1). Hence for this subsection we set

BS =w BT (BH + BN BT ),

so that β1+β2+ `∈O(BS).

Theorem 8.14. Suppose f ∈ Q[x ] is an unknown polynomial given by a modular black box,
with bounds BT , BH , BN , and BS given as above. The sparse representation of f as in (8.2) can
be computed with O(B 2.89

S log3.89 BS) word operations, plus O(κB 2.89
S log1.89 BS) word operations

for the black-box evaluations.

Proof. As in the sparsest-shift computation, the cost of choosing primes in Step 4 is

O(B 1.89
S log1.89 BS · logloglog BS)

word operations, and each chosen prime pk satisfies pk ∈O(B 1.89
S log1.89 BS).

The cost of Step 5 is O(p log2 p ) word operations at each of the O(BS) iterations, for a total
cost of O(p BS log2 p ) word operations. The black-box evaluations all occur on this step, and
their total cost is O(κp BS)word operations, which gives the stated cost.

We can compute each g (p i ) in Step 11 using O(M(t ) log t ) ring operations modulo p i − 1.
Note that k is bounded by O(`), which in turn is O(w · (BH + BN )). This gives the total cost in
word operations for all iterations of this step as O(w · (BH + BN )BT log2 BT ).

Step 12 performs t Chinese Remainderings each of k modular images, and the size of each
resulting integer is bounded by BN , for a cost of O(BT BN log2 BN )word operations.

To factor g in Step 13, we can use Algorithm 14.17 of von zur Gathen and Gerhard (2003),
which has a total cost in word operations of

O
�

B 3
T B 2

N log2 BT ·
�

log BT + log BN
�2
�

because the degree of g is t , g has t distinct roots, and each coefficient has size bounded by
O(BT BN ).
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In Step 16, we must first compute the modular image of e i mod p j − 1 and then look
through all t exponents of f (p j ) to find a match. This is repeated t k times. We can use fast
modular reduction to compute all the images of each e i using O(BN log2 BN ) bit operations,
so the total cost is O(w B 2

T (BH + BN )+ BT BN log2 BN )word operations.

Finally, we perform Chinese remaindering and rational reconstruction of t + 1 rational
numbers, each of whose size is bounded by BH , for a total cost of O(BT BH log2 BH ) word op-
erations.

Therefore we see that the complexity is always dominated by the dense interpolation in
Step 5.

Once again, by having only a single bound on the size of the output, the complexity mea-
sures are greatly simplified.

Corollary 8.15. If the lacunary representation size of an unknown polynomial f ∈ Q[x ] is
bounded by B f , then that representation can be interpolated from a modular black box using

O
�

B 8.67
f log6.78 B f

�

word operations, plus O
�

κB 8.67
f log4.78 B f

�

word operations for the black box

evaluations.

Similar improvements to those discussed at the end of Section 8.5.1 can be obtained under
stronger (but unproven) number theoretic assumptions.

8.6 Conclusions and Future Work

Here we provide the first algorithm to interpolate an unknown univariate rational polynomial
into the sparsest shifted power basis in time polynomial in the size of the output. The main
tool we have introduced is mapping down modulo small primes where the sparse shift is also
mapped nicely. This technique could be useful for other problems involving sparse polyno-
mials as well, although it is not clear how it would apply in finite domains where there is no
notion of “size”.

The complexity of our algorithm is now fairly good compared to previous approaches (that
required f to be given explicitly as input). However, as mentioned, improved results bounding
the size of primes in arithmetic progressions could improve the provable complexity of our
algorithm a bit further. A different approach suggested by the result of Baker and Harman
(1996) might also be useful to us in choosing smaller primes. Rather than start with primes
q and find larger primes p congruent to 1 modulo q , as we have done, they start with the
larger prime p and give lower bounds on the greatest prime divisor of p −1. It is possible that
this type of result could improve our complexity, but we have not yet fully investigated the
possibility.

There are many further avenues to consider, the first of which might be multivariate poly-
nomials with a shift in each variable (see, e.g., Grigoriev and Lakshman (2000)). It would be
easy to adapt our algorithms to this case provided that the degree in each variable is more
than twice the sparsity (this is called a “very sparse” shift in Giesbrecht et al. (2003)). In such
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cases, we could just choose random fixed values for all variables but one, then perform the
univariate sparsest shift algorithm to find the sparsest shift of that variable, and proceed to all
other variables.

Finding multivariate shifts in the general case seems more difficult. The precise difficult
case here is actually similar to the “Zippel sparse” complexity model, when the sparsity of the
sparsest shift is proportional to the partial degrees in each variable. Since the shifts may not
even be unique in such situations, it seems that a new approach will be necessary for this
problem.

Even more challenging would be allowing multiple shifts, for one or more variables — for
example, finding sparse g 1, . . . , g k ∈Q[x ] and shiftsα1, . . . ,αk ∈Q such that the unknown poly-
nomial f (x ) equals g 1(x −α1)+ · · ·+ g k (x −αk ). The most general problem of this type, which
we are very far from solving, might be to compute a minimal-length formula or minimal-size
algebraic circuit for an unknown function. We hope that the small step taken here might pro-
vide some insight towards this ultimate goal.
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