
I do not pretend to start with precise questions. I do not think you
can start with anything precise. You have to achieve such preci-
sion as you can, as you go along.

—Bertrand Russell, The Philosophy of Logical Atomism (1918)

Chapter 7

Sparse interpolation

The next two chapters examine methods to determine the sparse representation of an
unknown polynomial, given only a way to evaluate the polynomial at chosen points. These
methods are generally termed black-box sparse interpolation.

First, we examine a new approach to the standard sparse interpolation problem over large
finite fields and approximate complex numbers. This builds on recent work by Garg and
Schost (2009), improving the complexity of the fastest existing algorithm over large finite
fields, and the numerical stability of the state of the art for approximate sparse interpola-
tion. The primary new tool that we introduce is a randomised method to distinguish terms
in the unknown polynomial based on their coefficients, which we term diversification. Us-
ing this technique, our new algorithms gain practical and theoretical efficiency over previous
methods by avoiding the need to use factorization algorithms as a subroutine.

We gratefully acknowledge the helpful and useful comments by Éric Schost as well as the
Symbolic Computation Group members at the University of Waterloo on preliminary versions
of the work in this chapter.

7.1 Background

Polynomial interpolation is a long-studied and important problem in computer algebra and
symbolic computation. Given a way to evaluate an unknown polynomial at any chosen point,
and an upper bound on the degree, the interpolation problem is to determine a representa-
tion for the polynomial. In sparse interpolation, we are also given an upper bound on the
number of nonzero terms in the unknown polynomial, and the output is returned in the
sparse representation. Generally speaking, we seek algorithms whose cost is polynomially-
bounded by the size of the output, i.e., the sparse representation size of the unknown polyno-
mial.
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CHAPTER 7. SPARSE INTERPOLATION

Sparse interpolation has numerous applications in computer algebra and engineering.
Numerous mathematical computations suffer from the problem of intermediate expression
swell, whereby the size of polynomials encountered in the middle of a computation is much
larger than the size of the input or the output. In such cases where the output is known to
be sparse, sparse interpolation can eliminate the need to store large intermediate expressions
explicitly, thus greatly reducing not only the intermediate storage requirement but also the
computational cost. Important examples of such problems are multivariate polynomial fac-
torization and system solving (Canny, Kaltofen, and Yagati, 1989; Kaltofen and Trager, 1990;
Díaz and Kaltofen, 1995, 1998; Javadi and Monagan, 2007, 2009).

Solving non-linear systems of multivariate polynomials with approximate coefficients has
numerous practical applications, especially in engineering (see for example Sommese and
Wampler, 2005). Homotopy methods are a popular way of solving such systems and related
problems by following the paths of single solution points from an initial, easy system, to the
target system of interest. Once enough points are known in the target system, sparse inter-
polation methods are used to recover a polynomial expression for the actual solution. These
techniques generally fall under the category of hybrid symbolic-numeric computing, and in
particular have been applied to solving non-linear systems (e.g., Sommese, Verschelde, and
Wampler, 2001, 2004; Stetter, 2004) and factoring approximate multivariate polynomials (e.g.,
Kaltofen, May, Yang, and Zhi, 2008).

Sparse interpolation is also of interest in theoretical computer science. It is a non-trivial
generalisation of the important problem of polynomial identity testing, or PIT for short. Gen-
erally speaking, the PIT problem is to identify whether the polynomial represented by a given
algebraic circuit is identically zero. Surprisingly, although this question is easily answered
using randomisation and the classical results of Demillo and Lipton (1978); Zippel (1979);
Schwartz (1980), no deterministic polynomial-time algorithm is known. In fact, even de-
randomising the problem for circuits of depth four would have important consequences (Ka-
banets and Impagliazzo, 2004). We will not discuss this problem further, but the point the
reader to the excellent recent surveys of Saxena (2009) and Shpilka and Yehudayoff (2010).

7.1.1 Problem definition

Let f ∈ F[x1, . . . ,xn ] have degree less than d . A black box for f is a function which takes as
input a vector (a 1, . . . , a n ) ∈ Fn and produces f (a 1, . . . , a n ) ∈ F. The cost of the black box is the
number of operations in F required to evaluate it at a given input.

Clausen, Dress, Grabmeier, and Karpinski (1991) showed that, if only evaluations over the
ground field F are allowed, then for some instances at least Ω(n log t ) black box probes are re-
quired. Hence if we seek polynomial-time algorithms, we must extend the capabilities of the
black box. To this end, Díaz and Kaltofen (1998) introduced the idea of an extended domain
black box which is capable of evaluating f (b1, . . . ,bn ) ∈ E for any (b1, . . . ,bn ) ∈ En where E is
any extension field of F . That is, we can change every operation in the black box to work over
an extension field, usually paying an extra cost per evaluation proportional to the size of the
extension.
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CHAPTER 7. SPARSE INTERPOLATION

Motivated by the case of black boxes that are division-free algebraic circuits, we will use
the following model which we believe to be fair and cover all previous relevant results. Again
we use the notation of M(m ) for the number of field operations required to multiply two
dense univariate polynomials with degrees less than m , and O (̃m ) to represent any function
bounded by m (log m )O(1).

Definition 7.1. Let f ∈ F[x1, . . . ,xn ] and ` > 0. A remainder black box for f with size ` is a
procedure which, given any monic square-free polynomial g ∈ F[y ] with deg g =m , and any
h1, . . . , hn ∈ F[y ] with each deg h i < m , produces f (h1, . . . , hn )rem g using at most ` ·M(m )
operations in F.

This definition is general enough to cover the algorithms we know of over finite fields, and
we submit that the cost model is fair to the standard black box, extended domain black box,
and algebraic circuit settings. The model also makes sense over complex numbers, as we will
see.

7.1.2 Interpolation over finite fields

We first summarize previously known univariate interpolation algorithms when F is a finite
field with q elements and identify our new contributions here. For now, let f ∈ Fq [x ] have
degree less than d and sparsity t . We will assume we have a remainder black box for f with
size `. Since field elements can be represented with O(logq ) bits, a polynomial-time algorithm
will have cost polynomial in `, t , log d , and logq .

For the dense output representation, one can use the classical method of Newton, Waring,
and Lagrange to interpolate in O (̃`d ) time (von zur Gathen and Gerhard, 2003, §10.2).

The algorithm of Ben-Or and Tiwari (1988) for sparse polynomial interpolation, and in
particular the version developed by Kaltofen and Yagati (1989), can be adapted to arbitrary
finite fields. Unfortunately, these algorithms require t discrete logarithm computations in F∗q ,
whose cost is small if the field size q is chosen carefully (as in Kaltofen (2010)), but not in
general. For arbitrary (and potentially large) q , we can take advantage of the fact that each
discrete logarithm that needs to be computed falls in the range [0, 1, . . . , d −1]. The “kangaroo
method” of Pollard (1978, 2000) can, with high probability, compute such a discrete log with
O(
p

d ) field operations. Using this algorithm makes brings the total worst-case cost of Ben-Or
and Tiwari’s algorithm to O(t `+ t 2+ t

p
d ).

This chapter builds most directly on the work of (Garg and Schost, 2009), who gave the
first polynomial-time algorithm for sparse interpolation over an arbitrary finite field. Their
algorithm works roughly as follows. For very small primes p , use the black box to compute f
modulo x p − 1. A prime p is a “good prime” if and only if all the terms of f are still distinct
modulo x p − 1. If we do this for all p in the range of roughly O(t 2 log d ), then there will be
sufficient good primes to recover the unique symmetric polynomial over Z[y ] whose roots
are the exponents of nonzero terms in f . We then factor this polynomial to find those expo-
nents, and correlate with any good prime image to determine the coefficients. The total cost
is O (̃`t 4 log2 d )field operations. Using randomization, it is easy to reduce this to O (̃`t 3 log2 d ).
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Probes Probe degree Computation cost Total cost
Dense d 1 O (̃d ) O (̃`d )

Ben-Or & Tiwari O(t ) 1 O(t 2+ t
p

d ) O (̃`t + t 2+ t
p

d )
Garg & Schost O (̃t 2 log d ) O (̃t 2 log d ) O (̃t 4 log2 d ) O (̃`t 4 log2 d )

Randomized G & S O (̃t log d ) O (̃t 2 log d ) O (̃t 3 log2 d ) O (̃`t 3 log2 d )
Ours O(log d ) O (̃t 2 log d ) O (̃t 2 log2 d ) O (̃`t 2 log2 d )

Table 7.1: Sparse univariate interpolation over large finite fields,
with black box size `, degree d , and t nonzero terms

Observe that the coefficients of the symmetric integer polynomial in Garg & Schost’s al-
gorithm are bounded by O(d t ), which is much larger than the O(d ) size of the exponents
ultimately recovered. Our primary contribution over finite fields of size at least Ω(t 2d ) is a
new algorithm which avoids evaluating the symmetric polynomial and performing root find-
ing over Z[y ]. As a result, we reduce the total number of required evaluations and develop
a randomized algorithm with cost O (̃`t 2 log2 d ), which is roughly quadratic in the input and
output sizes. Since this can be deterministically verified in the same time, our algorithm (as
well as the randomized version of Garg & Schost) is of the Las Vegas type.

The relevant previous results mentioned above are summarized in Table 7.1, where we
assume in all cases that the field size q is “large enough”. In the table, the “probe degree”
refers to the degree of g in each evaluation of the remainder black box as defined above.

7.1.3 Multivariate interpolation

Any of the univariate algorithms above can be used to generate a multivariate polynomial
interpolation algorithm in at least two different ways. For what follows, write ρ(d , t ) for the
number of remainder black box evaluations required by some univariate interpolation algo-
rithm,∆(d , t ) for the degree of the remainder in each evaluation, andψ(d , t ) for the number
of other field operations required besides black box calls. Observe that these correspond to
the first three columns in Table 7.1.

The first way to adapt a univariate interpolation algorithm to a multivariate one is Kro-
necker substitution: given a remainder black box for an unknown f ∈ F[x1, . . . ,xn ], with each
partial degree less than d , we can easily construct a remainder black box for the univariate
polynomial f̂ = f (x ,x d ,x d 2 , . . . ,x d n−1) ∈ F[x ], whose terms correspond one-to-one with terms
of f . This is the approach taken for instance in Kaltofen (2010, §2) for the interpolation of
multivariate polynomials with rational coefficients. The cost is simply the cost of the chosen
underlying univariate algorithm, with the degree increased to d n .

The other method for constructing a multivariate interpolation algorithm is due to Zip-
pel (1990). The technique is inherently probabilistic and works variable-by-variable, at each
step solving a number of t̂ × t̂ transposed Vandermonde systems, for some t̂ ≤ t . Specifically,
each system is of the form Ax = b , where A is a t̂ × t̂ matrix of scalars from the coefficient
field Fq . The vector v consists of the output of t̂ remainder black box evaluations, and so its
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Kronecker Zippel
Dense O (̃`d n ) O (̃`nt d )

Ben-Or & Tiwari O (̃`t + t 2+ t d n/2) O (̃nt 3+nt 2
p

d + `nt 2)
Garg & Schost O (̃`n 2t 4 log2 d ) O (̃`nt 5 log2 d )

Randomized G & S O (̃`n 2t 3 log2 d ) O (̃`nt 4 log2 d )
Ours O (̃`n 2t 2 log2 d ) O (̃`nt 3 log2 d )

Table 7.2: Sparse multivariate interpolation over large finite fields,
with black box size `, n variables, degree d , and t nonzero terms

elements are in Fq [y ], and the system must be solved modulo some g ∈ Fq [y ], as specified
by the underlying univariate algorithm. Observe however that since A does not contain poly-
nomials, computing x = A−1b requires no modular polynomial arithmetic. In fact, using the
same techniques as Kaltofen and Yagati (1989, §5), employing fast dense bivariate polynomial
arithmetic, each system can be solved using

O
�

M
�

t ·∆(d , t )
�

· log
�

t ·∆(d , t )
�

�

field operations.

Each transposed Vandermonde system gives the remainder black box evaluation of each
of t̂ univariate polynomials that we are interpolating in that step. The number of such systems
that must be solved is thereforeρ(d , t ), as determined by the underlying univariate algorithm.
Finally, each of the t̂ univariate interpolations proceeds with the given evaluations. The total
cost, over all iterations, is

O˜
�

`nt ·∆(d , t ) ·ρ(d , t )
�

field operations for the remainder black box evaluations, plus

O˜
�

ntψ(d , t )+ `nt ·∆(d , t )
�

field operations for additional computation. Zippel (1990) used the dense algorithm for uni-
variate interpolation; using Ben-Or and Tiwari’s algorithm instead was studied by Kaltofen
and Lee (2003).

Table 7.2 summarizes the cost of the univariate algorithms mentioned above applied to
sparse multivariate interpolation over a sufficiently large finite field, using Kronecker’s and
Zippel’s methods.

For completeness, we mention a few more results on closely related problems that do not
have a direct bearing on the current study. Grigoriev, Karpinski, and Singer (1990) give a par-
allel algorithm with small depth but which is not competitive in our model due to the large
number of processors required. A practical parallel version of Ben-Or and Tiwari’s algorithm
has been developed by (Javadi and Monagan, 2010). (Kaltofen, Lakshman, and Wiley, 1990)
and (Avendaño, Krick, and Pacetti, 2006) present modular algorithms for interpolating poly-
nomials with rational and integer coefficients. However, their methods do not seem to apply
to finite fields.
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CHAPTER 7. SPARSE INTERPOLATION

7.1.4 Approximate Polynomial Interpolation

In Section 7.4 we consider the case of approximate sparse interpolation. Our goal is to pro-
vide both a numerically more robust practical algorithm, but also the first algorithm which is
provably numerically stable, with no heuristics or conjectures. We define an “ε-approximate
black box” as one which evaluates an unknown t -sparse target polynomial f ∈ C[x ], of de-
gree d , with relative error at most ε > 0. Our goal is to build a t -sparse polynomial g such
that



 f − g


≤ ε


 f


. A bound on the degree and sparsity of the target polynomial, as well as
ε, must also be provided. In Section 7.4 we formally define the above problem, and demon-
strate that the problem of sparse interpolation is well-posed. We then adapt our variant of
the (Garg and Schost, 2009) algorithm for the approximate case, prove it is numerically accu-
rate in terms of the relative error of the output, and analyze its cost. We also present a full
implementation in Section 7.5 and validating experiments.

Recently, a number of numerically-focussed sparse interpolation algorithms have been
presented. The algorithm of (Giesbrecht, Labahn, and Lee, 2009) is a numerical adaptation
of (Ben-Or and Tiwari, 1988), which samples f at O(t ) randomly chosen roots of unityω ∈C
on the unit circle. In particular, ω is chosen to have (high) order at least the degree, and
a randomization scheme is used to avoid clustering of nodes which will cause dramatic ill-
conditioning. A relatively weak theoretical bound is proven there on the randomized condi-
tioning scheme, though experimental and heuristic evidence suggests it is much better in
practice. (Cuyt and Lee, 2008) adapt Rutishauser’s qd algorithm to alleviate the need for
bounds on the partial degrees and the sparsity, but still evaluate at high-order roots of unity.
Approximate sparse rational function interpolation is considered by (Kaltofen and Yang, 2007)
and (Kaltofen, Yang, and Zhi, 2007), using the Structured Total Least Norm (STLN) method
and, in the latter, randomization to improve conditioning. Approximate sparse interpolation
is also considered for integer polynomials by (Mansour, 1995), where a polynomial-time al-
gorithm is presented in quite a different model from ours. In particular the evaluation error
is absolute (not relative) and the complexity is sensitive to the bit length of the integer coeffi-
cients.

Note that all these works evaluate the polynomial only on the unit circle. This is necessary
because we allow and expect f to have very large degree, which would cause a catastrophic
loss of precision at data points of non-unit magnitude. Similarly, we assume that the complex
argument of evaluation points is exactly specified, which is again necessary because any error
in the argument would be exponentially magnified by the degree.

The primary contribution of our work in Section 7.4 below is to provide an algorithm with
both rigorously provable relative error and good practical performance. Our algorithm typi-
cally requires O (̃t 2 log2 d ) evaluations at primitive roots of unity of order O (̃t 2 log d ) (as op-
posed to order d in previous approaches). We guarantee that it finds a t -sparse polynomial
g such that



g − f


≤ 2ε


 f


. An experimental demonstration of the numerical robustness is
given in Section 7.5.
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7.2 Sparse interpolation for generic fields

For the remainder, we assume the unknown polynomial f is always univariate. This is with-
out loss of generality, as we can use the Kronecker substitution as discussed previously. The
exponential increase in the univariate degree only corresponds to a factor of n increase in
log deg f , and since our algorithms will ultimately have cost polynomial in log deg f , polyno-
mial time is preserved.

Assume a fixed, unknown, t -sparse univariate polynomial f ∈ F[x ]with degree at most d .
We will use a remainder black box for f to evaluate f rem(x p −1) for small primes p . We say p
is a “good prime” if the sparsity of f rem(x p − 1) is the same as that of f itself — that is, none
of the exponents are equivalent modulo p .

The minimal bit length required so that a randomly chosen prime is with high probability
a good prime is shown in the following lemma.

Lemma 7.2. Let f ∈ F[x ] be a t -sparse polynomial with degree d , and let

λ=max

�

21,

�

5

3
t (t −1) ln d

��

.

A prime chosen at random in the range λ, . . . , 2λ is a good prime for f with probability at least
1/2.

Proof. Write e1, . . . , e t for the exponents of nonzero terms in f . If p is a bad prime, then p
divides (e j − e i ) for some i < j . Each e j − e i ≤ d , so there can be at most logλd = ln d / lnλ
primes that divide each e j − e i . There are exactly

�t
2

�

such pairs of exponents, so the total
number of bad primes is at most (t (t −1) ln d )/(2 lnλ).

From Rosser and Schoenfeld (1962, Corollary 3 to Theorem 2), the total number of primes
in the range λ, . . . , 2λ is at least 3λ/(5 lnλ) when λ ≥ 21, which is at least t (t − 1) ln d / lnλ, at
least twice the number of bad primes.

Now observe an easy case for the sparse interpolation problem. If a polynomial f ∈ F[x ],
has all coefficients distinct; that is, f =

∑

1≤i≤t c i x e i and c i = c j ⇒ i = j , then we say f is
diverse. To interpolate a diverse polynomial f ∈ F[x ], we first follow the method of Garg
and Schost (2009) by computing f rem(x p i − 1) for “good primes” p i such that the sparsity
of f rem(x p i −1) is the same as that of f . Since f is diverse, f rem(x p i −1) is also diverse and in
fact each modular image has the same set of coefficients. Using this fact, we avoid the need to
construct and subsequently factor the symmetric polynomial in the exponents. Instead, we
correlate like terms based on the (unique) coefficients in each modular image, then use sim-
ple Chinese remaindering to construct each exponent e i from its image modulo each p i . This
requires only O(log d ) remainder black box evaluations at good primes, gaining a factor of t
improvement over the randomized version of Garg and Schost (2009) for diverse polynomials.

In the following sections, we will show how to choose an α ∈ F so that f (αx ) — which
we can easily construct a remainder black box for — is diverse. With such a procedure, Algo-
rithm 7.1 gives a Monte Carlo algorithm for interpolation over a general field.
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Algorithm 7.1: Generic interpolation

Input: µ∈R>0, T, D,q ∈N, and a remainder black box for unknown T -sparse f ∈ F[x ]
with deg f <D

Output: t ∈N, e1, . . . , e t ∈N, and c1, . . . , c t ∈ F such that f =
∑

1≤i≤t c i x e i

1 t ← 0

2 λ←max
�

21,
 

5
3

T (T −1) ln D
£�

3 for dlog2(3/µ)e primes p ∈ {λ, . . . , 2λ} do
4 Use black box to compute f p = f (x )rem(x p −1)
5 if f p has more than t terms then
6 t ← sparsity of f p

7 %← p

8 α← element of F such that Pr[ f (αx ) is not diverse]<µ/3
9 g%← f (αx )rem(x% −1)

10 c1, . . . , c t ← nonzero coefficients of g%
11 e1, . . . , e t ← 0
12 for d2 ln(3/µ)+4(ln D)/(lnλ)e primes p ∈ {λ, . . . , 2λ} do
13 Use black box to compute g p = f (αx )rem(x p −1)
14 if g p has exactly t nonzero terms then
15 for i = 1, . . . , t do Update e i with exponent of c i in g p modulo p via Chinese

remaindering

16 for i = 1, . . . , t do c i ← c iα−e i

17 return f (x ) =
∑

1≤i≤t c i x e i
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Theorem 7.3. With inputs as specified, Algorithm 7.1 correctly computes the unknown poly-
nomial f with probability at least 1−µ. The total cost in field operations (except for step 8)
is

O

�

` ·
�

log D

log T + loglog D
+ log

1

µ

�

·M
�

T 2 log D
�

�

.

Proof. The for loop on line 3 searches for the true sparsity t and a single good prime %. Since
each prime p in the given range is good with probability at least 1/2 by Lemma 7.2, the prob-
ability of failure at this stage is at most µ/3.

The for loop on line 12 searches for and uses sufficiently many good primes to recover the
exponents of f . The product of all the good primes must be at least D, and since each prime
is at least λ, at least (ln D)/(lnλ) good primes are required.

Let n = d2 ln(3/µ) + 4(ln D)/(lnλ)e be the number of primes sampled in this loop, and
k = d(ln D)/(lnλ)e the number of good primes required. We can derive that (n/2 − k )2 ≥
(ln(3/µ) + k )2 > (n/2) ln(3/µ), and therefore exp(−2(n

2
− k )2/n ) < µ/3. Using Hoeffding’s In-

equality (Hoeffding, 1963), this means the probability of encountering fewer than k good
primes is less than µ/3.

Therefore the total probability of failure is at most µ. For the cost analysis, the dominating
cost will be the modular black box evaluations in the last for loop. The number of evaluations
in this loop is O(log(1/µ)+ (log D)/(logλ)), and each evaluation has cost O(` ·M(λ)). Since the
size of each prime is Θ((log D)/(log T + loglog D)), the complexity bound is correct as stated.

In case the bound T on the number of nonzero terms is very bad, we could choose a
smaller value of λ based on the true sparsity t before line 8, improving the cost of the re-
mainder of the algorithm.

In addition, as our bound on possible number of “bad primes” seems to be quite loose. A
more efficient approach in practice would be to replace the for loop on line 12 with one that
starts with a prime much smaller than λ and incrementally searches for larger primes, until
the product of all good primes is at least D. We could choose the lower bound to start search-
ing from based on lower bounds on the birthday problem. That is, assuming (falsely) that the
exponents are randomly distributed modulo p , start with the least p that will have no expo-
nents collide modulo p with high probability. This would yield an algorithm more sensitive
to the true bound on bad primes, but unfortunately gives a worse formal cost analysis.

7.3 Sparse interpolation over finite fields

We now examine the case that the ground field F is the finite field with q elements, which we
denote Fq . First we show how to effectively diversify the unknown polynomial f in order to
complete Algorithm 7.1 for the case of large finite fields. Then we show how to extend this to
a Las Vegas algorithm with the same complexity.
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7.3.1 Diversification

For an unknown f ∈ Fq [x ] given by a remainder black box, we must find an α so that f (αx ) is
diverse. A surprisingly simple trick works: evaluating f (αx ) for a randomly chosen nonzero
α∈Fq .

Theorem 7.4. For q ≥ T (T −1)D+1 and any T -sparse polynomial f ∈Fq [x ]with deg f <D, if
α is chosen uniformly at random from F∗q , the probability that f (αx ) is diverse is at least 1/2.

Proof. Let t ≤ T be the exact number of nonzero terms in f , and write f =
∑

1≤i≤t c i x e i , with
nonzero coefficients c i ∈F∗q and e1 < e2 < · · ·< e t . So the i th coefficient of f (αx ) is c iαe i .

If f (αx ) is not diverse, then we must have c iαe i = c jαe j for some i 6= j . Therefore consider
the polynomial A ∈Fq [y ] defined by

A =
∏

1≤i<j≤t

�

c i y e i − c j y e j
�

.

We see that f (αx ) is diverse if and only if A(α) 6= 0, hence the number of roots of A over Fq is
exactly the number of unlucky choices for α.

The polynomial A is the product of exactly
�t

2

�

binomials, each of which has degree less
than D. Therefore

deg A <
T (T −1)D

2
,

and this also gives an upper bound on the number of roots of A. Hence q −1≥ 2 deg A, and at
least half of the elements of F∗q are not roots of A, yielding the stated result.

Using this result, given a black box for f and the exact sparsity t of f , we can find anα∈Fq

such that f (αx ) is diverse by sampling random values α∈Fq , evaluating f (αx )remx p−1 for a
single good prime p , and checking whether the polynomial is diverse. With probability at least
1−µ, this will succeed in finding a diversifying α after at most dlog2(1/µ)e iterations. Therefore
we can use this approach in Algorithm 7.1 with no effect on the asymptotic complexity.

7.3.2 Verification

So far, Algorithm 7.1 over a finite field is probabilistic of the Monte Carlo type; that is, it may
give the wrong answer with some controllably-small probability. To provide a more robust
Las Vegas probabilistic algorithm, we require only a fast way to check that a candidate answer
is in fact correct. To do this, observe that given a modular black box for an unknown T -sparse
f ∈ Fq [x ] and an explicit T -sparse polynomial g ∈ Fq [x ], we can construct a modular black
box for the 2T -sparse polynomial f − g of their difference. Verifying that f = g thus reduces
to the well-studied problem of deterministic polynomial identity testing.

The following algorithm is due to (Bläser, Hardt, Lipton, and Vishnoi, 2009) and provides
this check in essentially the same time as the interpolation algorithm; we restate it in Algo-
rithm 7.2 for completeness and to use our notation.
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Algorithm 7.2: Verification over finite fields

Input: T, D,q ∈N and remainder black box for unknown T -sparse f ∈Fq [x ]with
deg f ≤D

Output: ZERO iff f is identically zero
1 for the least (T −1) log2 D primes p do
2 Use black box to compute f p = f rem(x p −1)
3 if f p 6= 0 then return NONZERO

4 return ZERO

Theorem 7.5. Algorithm 7.2 works correctly as stated and uses at most

O
�

`T log D ·M
�

T log D ·
�

log T + loglog D
���

field operations.

Proof. For correctness, notice that the requirements for a “good prime” for identity testing
are much weaker than for interpolation. Here, we only require that a single nonzero term
not collide with any other nonzero term. That is, every bad prime p will divide e j − e1 for
some 2 ≤ j ≤ T . There can be log2 D distinct prime divisors of each e j − e1, and there are
T −1 such differences. Therefore testing that the polynomial is zero modulo x p−1 for the first
(T − 1) log2 D primes is sufficient to guarantee at least one nonzero evaluation of a nonzero
T -sparse polynomial.

For the cost analysis, the prime number theorem (Bach and Shallit, 1996, Theorem 8.8.4),
tells us that the first (T −1) log2 D primes are each bounded by O(T · log D · (log T + loglog D)).
The stated bound follows directly.

This provides all that we need to prove the main result of this section:

Theorem 7.6. Given q ≥ T (T − 1)D + 1, any T, D ∈ N, and a modular black box for unknown
T -sparse f ∈ Fq [x ] with deg f ≤ D, there is an algorithm that always produces the correct
polynomial f and with high probability uses only O˜

�

`T 2 log2 D
�

field operations.

Proof. Use Algorithms 7.1 and 7.2 with µ = 1/2, looping as necessary until the verification
step succeeds. With high probability, only a constant number of iterations will be necessary,
and so the cost is as stated.

For the small field case, when q ∈O(T 2D), the obvious approach would be to work in an
extension E of size O(log T + log D) over Fq . Unfortunately, this would presumably increase
the cost of each evaluation by a factor of log D, potentially dominating our factor of T savings
compared to the randomized version of (Garg and Schost, 2009) when the unknown polyno-
mial has very few terms and extremely high degree.

In practice, it seems that a much smaller extension than this is sufficient in any case to
make each gcd(e j − e i ,q − 1) small compared to q − 1, but we do not yet know how to prove
any tighter bound in the worst case.
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7.4 Approximate sparse interpolation algorithms

In this section we consider the problem of interpolating an approximate sparse polynomial
f ∈C[x ] from evaluations on the unit circle. We will generally assume that f is t -sparse:

f =
∑

1≤i≤t

c i x e i for c i ∈C and e1 < · · ·< e t = d . (7.1)

We require a notion of size for such polynomials, and define the coefficient 2-norm of f =
∑

0≤i≤d f i x i as


 f


=
r

∑

0≤i≤d

| f i |2.

The following identity relates the norm of evaluations on the unit circle and the norm of
the coefficients. As in Section 7.2, for f ∈ C[x ] is as in (7.1), we say that a prime p is a good
prime for f if p - (e i − e j ) for all i 6= j .

Lemma 7.7. Let f ∈C[x ], p a good prime for f , andω∈C a p th primitive root of unity. Then



 f




2
=

1

p

∑

0≤i<p

�

� f (ωi )
�

�

2
.

Proof. See Theorem 6.9 in the previous chapter.

We can now formally define the approximate sparse univariate interpolation problem.

Definition 7.8. Let ε > 0 and assume there exists an unknown t -sparse f ∈ C[x ] of degree at
most D. An ε-approximate black box for f takes an input ξ∈C and produces a γ∈C such that
|γ− f (ξ)| ≤ ε| f (ξ)|.

That is, the relative error of any evaluation is at most ε. As noted in the introduction, we
will specify our input points exactly, at (relatively low order) roots of unity. The approximate
sparse univariate interpolation problem is then as follows: given D, T ∈ N and δ ≥ ε > 0, and
an ε-approximate black box for an unknown T -sparse polynomial f ∈C[x ] of degree at most
D, find a T -sparse polynomial g ∈C[x ] such that



 f − g


≤δ


g


.

The following theorem shows that t -sparse polynomials are well-defined by good evalua-
tions on the unit circle.

Theorem 7.9. Let ε> 0 and f ∈C[x ] be a t -sparse polynomial. Suppose there exists a t -sparse
polynomial g ∈ C[x ] such that for a prime p which is good for both f and f − g , and p th
primitive root of unityω∈C, we have

| f (ωi )− g (ωi )| ≤ ε| f (ωi )| for 0≤ i < p .

Then


 f − g


 ≤ ε


 f


. Moreover, if g 0 ∈ C[x ] is formed from g by deleting all the terms not in
the support of f , then



 f − g 0



≤ 2ε


 f


.
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Proof. Summing over powers ofωwe have
∑

0≤i<p

| f (ωi )− g (ωi )|2 ≤ ε2
∑

0≤i<p

| f (ωi )|2.

Thus, since p is a good prime for both f − g and f , using Lemma 7.7, p ·


 f − g




2 ≤ ε2 ·p ·


 f




2

and


 f − g


≤ ε


 f


.

Since g − g 0 has no support in common with f


g − g 0



≤


 f − g


≤ ε


 f


 .

Thus


 f − g 0



=


 f − g +(g − g 0)




≤


 f − g


+


g − g 0



≤ 2ε


 f


 .

In other words, any t -sparse polynomial whose values are very close to f must have the
same support except possibly for some terms with very small coefficients.

7.4.1 Computing the norm of an approximate sparse polynomial

As a warm-up exercise, consider the problem of computing an approximation for the 2-norm
of an unknown polynomial given by a black box. Of course we this is an easier problem than
actually interpolating the polynomial, but the technique bears some similarity. In practice,
we might also use an approximation for the norm to normalize the black-box polynomial,
simplifying certain computations and bounds calculations.

Let 0 < ε < 1/2 and assume we are given an ε-approximate black box for some t -sparse
polynomial f ∈C[x ]. We first consider the problem of computing



 f


.

Algorithm 7.3: Approximate norm

Input: T, D ∈N and ε-approximate black box for unknown T -sparse f ∈C[x ]with
deg f ≤D

Output: σ ∈R, an approximation to


 f




1 λ←max
�

21,
 

5
3

t (t −1) ln d
£�

2 Choose a prime p randomly from {λ, . . . , 2λ}
3 ω← exp(2πi/p )
4 w ← ( f (ω0), . . . , f (ωp−1))∈Cp computed using the black box
5 return (1/pp ) · ‖w ‖

Theorem 7.10. Algorithm 7.3 works as stated. On any invocation, with probability at least 1/2,
it returns a valueσ ∈R≥0 such that

(1−2ε)


 f


<σ< (1+ε)


 f


 .
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Proof. Let v = ( f (ω0), . . . , f (ωp−1)) ∈ Cp be the vector of exact evaluations of f . Then by the
properties of our ε-approximate black box we have w = v + ε∆, where |∆i | < | f (ωi )| for 0 ≤
i < p , and hence ‖∆‖ < ‖v ‖. By the triangle inequality ‖w ‖ ≤ ‖v ‖+ ε‖∆‖ < (1+ ε)‖v ‖. By
Lemmas 7.2 and 7.7, ‖v ‖=pp



 f


 with probability at least 1/2, so (1/pp ) · ‖w ‖< (1+ε)


 f




with this same probability.

To establish a lower bound on the output, note that we can make error in the evaluation
relative to the output magnitude: because ε < 1/2, | f (ωi )−w i |< 2ε|w i | for 0≤ i < p . We can
write v = w + 2ε∇, where ‖∇‖ < ‖w ‖. Then ‖v ‖ ≤ (1+ 2ε)‖w ‖, and (1− 2ε)



 f


 < (1/pp ) ·
‖w ‖.

7.4.2 Constructing an ε-approximate remainder black box

Assume that we have chosen a good prime p for a t -sparse f ∈ F[x ]. Our goal in this subsec-
tion is a simple algorithm and numerical analysis to accurately compute f remx p −1.

Assume that f remx p − 1 =
∑

0≤i<p b i x i exactly. For a primitive p th root of unity ω ∈ C,
let V (ω) ∈ Cp×p be the Vandermonde matrix built from the points 1,ω, . . . ,ωp−1. Recall that
V (ω) · (b0, . . . ,bp−1)T = ( f (ω0), . . . , f (ωp−1))T and V (ω−1) = p ·V (ω)−1. Matrix vector product by
such Vandermonde matrices is computed very quickly and in a numerically stable manner by
the Fast Fourier Transform (FFT).

Algorithm 7.4: Approximate Remainder

Input: An ε-approximate black box for the unknown t -sparse f ∈C[x ], and p ∈N, a
good prime for f

Output: h ∈C[x ] such that


( f remx p −1)−h


≤ ε


 f


.
1 w ← ( f (ω0), . . . , f (ωp−1))∈Cp computed using the ε-approximate black box for f
2 u ← (1/p ) ·V (ω−1)w ∈Cp using the FFT algorithm
3 return h =

∑

0≤i<p u i x i ∈C[x ]

Theorem 7.11. Algorithm 7.4 works as stated, and




�

f remx p −1
�

−h


≤ ε


 f


 .

It requires O(p log p ) floating point operations and p evaluations of the black box.

Proof. Because f and f remx p − 1 have exactly the same coefficients (p is a good prime for
f ), they have exactly the same norm. The FFT in Step 2 is accomplished in O(p log p ) floating
point operations. This algorithm is numerically stable since (1/pp )·V (ω−1) is unitary. That is,
assume v = ( f (ω0), . . . , f (ωp−1))∈Cp is the vector of exact evaluations of f , so ‖v −w ‖ ≤ ε‖v ‖
by the black box specification. Then, using the fact that ‖v ‖=pp



 f


,



( f remx p−1)−h


=









1

p
V (ω−1)v −

1

p
V (ω−1)w









=
1
p

p









1
p

p
V (ω−1) · (v −w )









=
1
p

p
‖v −w ‖ ≤

ε
p

p
‖v ‖= ε



 f


 .
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7.4.3 Creating ε-diversity

First, we extend the notion of polynomial diversity to the approximate case.

Definition 7.12. Let f ∈ C[x ] be a t -sparse polynomial as in (7.1) and δ ≥ ε > 0 such that
|c i | ≥ δ



 f


 for 1 ≤ i ≤ t . The polynomial f is said to be ε-diverse if and only if every pair of
distinct coefficients is at least ε



 f


 apart. That is, for every 1≤ i < j ≤ t , |c i − c j | ≥ ε


 f


.

Intuitively, if (ε/2) corresponds to the machine precision, this means that an algorithm can
reliably distinguish the coefficients of a ε-diverse polynomial. We now show how to choose a
random α to guarantee ε-diversity.

Theorem 7.13. Let δ ≥ ε > 0 and f ∈ C[x ] a t -sparse polynomial whose non-zero coefficients
are of magnitude at least δ



 f


. If s is a prime satisfying s > 12 and

t (t −1)≤ s ≤ 3.1
δ

ε
,

then for ζ= e2πi/s an s -PRU and k ∈N chosen uniformly at random from {0, 1, . . . , s−1}, f (ζk x )
is ε-diverse with probability at least 1

2
.

Proof. For each 1 ≤ i ≤ t , write the coefficient c i in polar notation to base ζ as c i = riζθi ,
where each ri and θi are nonnegative real numbers and ri ≥δ



 f


.

Suppose f (ζk x ) is not ε-diverse. Then there exist indices 1≤ i < j ≤ t such that
�

�riζ
θiζk e i − rjζ

θjζk e j
�

�≤ ε


 f


 .

Because min(ri , rj ) ≥ δ


 f


, the value of the left hand side is at least δ


 f


 ·
�

�ζθi+k e i −ζθj+k e j
�

�.
Dividing out ζθj+k e i , we get

�

�ζθi−θj −ζk (e j−e i )
�

�≤
ε

δ
.

By way of contradiction, assume there exist distinct choices of k that satisfy the above in-
equality, say k1, k2 ∈ {0, . . . , s −1}. Since ζθi−θj and ζe j−e i are a fixed powers of ζ not depending
on the choice of k , this means

�

�ζk1(e j−e i )−ζk2(e j−e i )
�

�≤ 2
ε

δ
.

Because s is prime, e i 6= e j , and we assumed k1 6= k2, the left hand side is at least |ζ−1|.
Observe that 2π/s , the distance on the unit circle from 1 to ζ, is a good approximation for this
Euclidean distance when s is large. In particular, since s > 12,

|ζ−1|
2π/s

>

p
2
�p

3−1
�

/2

π/6
,

and therefore |ζ−1| > 6
p

2(
p

3− 1)/s > 6.2/s , which from the statement of the theorem is at
least 2ε/δ. This is a contradiction, and therefore the assumption was false; namely, there is at
most one choice of k such that the i ’th and j ’th coefficients collide.

Then, since there are exactly
�t

2

�

distinct pairs of coefficients, and s ≥ t (t −1) = 2
�t

2

�

, f (ζk x )
is diverse for at least half of the choices for k .
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Algorithm 7.5: Adaptive diversification

Input: ε-approximate black box for f , known good prime p , known sparsity t
Output: ζ, k such that f (ζk x ) is ε-diverse, or FAIL

1 s ← 1, δ←∞, f p ← 0
2 while s ≤ t 2 and #{coeffs c of f s s.t. |c | ≥δ}< t do
3 s ← least prime ≥ 2s
4 ζ← exp(2πi/s )
5 k ← random integer in {0, 1, . . . , s −1}
6 Compute f s = f (ζk x )remx p −1
7 δ← least number s.t. all coefficients of f s at least δ in absolute value are pairwise

ε-distinct

8 if δ> 2ε then return FAIL
9 else return ζk

We note that the diversification which maps f (x ) to f (ζk x ) and back is numerically stable
since ζ is on the unit circle.

In practice, the previous theorem will be far too pessimistic. We therefore propose the
method of Algorithm 7.5 to adaptively choose s , δ, and ζk simultaneously, given a good prime
p .

Suppose there exists a threshold S ∈ N such that for all primes s > S, a random s th prim-
itive root of unity ζk makes f (ζk x ) ε-diverse with high probability. Then Algorithm 7.5 will
return a root of unity whose order is within a constant factor of S, with high probability. From
the previous theorem, if such an S exists it must be O(t 2), and hence the number of iterations
required is O(log t ).

Otherwise, if no such S exists, then we cannot diversify the polynomial. Roughly speaking,
this corresponds to the situation that f has too many coefficients with absolute value close to
the machine precision. However, the diversification is not actually necessary in the approxi-
mate case to guarantee numerical stability. At the cost of more evaluations, as well as the need
to factor an integer polynomial, the algorithm of (Garg and Schost, 2009) for finite fields can
be adapted quite nicely for the approximate case. This is essentially the approach we outline
below, and even if the diversification step is omitted, the stated numerical properties of the
computation will still hold true.

7.4.4 Approximate interpolation algorithm

We now plug our ε-approximate remainder black box, and method for making f ε-diverse,
into our generic Algorithm 7.1 to complete our algorithm for approximate interpolation.

Theorem 7.14. Let δ > 0, f ∈C[x ] with degree at most D and sparsity at most T , and suppose
all nonzero coefficients c of f satisfy |c | > δ



 f


. Suppose also that ε < 1.5δ/(T (T − 1)), and
we are given an ε-approximate black box for f . Then, for any µ < 1/2 we have an algorithm
to produce a g ∈ C[x ] satisfying the conditions of Theorem 7.9. The algorithm succeeds with
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probability at least 1−µ and uses O (̃T 2 · log(1/µ) · log2 D) black box evaluations and floating
point operations.

Proof. Construct an approximate remainder black box for f using Algorithm 7.4. Then run
Algorithm 7.1 using this black box as input. On step 8 of Algorithm 7.1, run Algorithm 7.5,
iterating steps 5–7 dlog2(3/µ)e times on each iteration through the while loop to choose a di-
versifying α= ζk with probability at least 1−µ/3.

The cost comes from Theorems 7.3 and 7.11 along with the previous discussion and The-
orem 7.13.

Observe that the resulting algorithm is Monte Carlo, but could be made Las Vegas by com-
bining the finite fields zero testing algorithm discussed in Section 7.3.2 with the guarantees of
Theorem 7.9.

7.5 Implementation results

We implemented our algorithms in the MVP library, using GMP (Granlund et al., 2010) and
NTL (Shoup, 2009) for the exponent arithmetic. For comparison with the algorithm of Garg
and Schost (2009), we also used NTL’s squarefree polynomial factorization routines. We note
that, in our experiments, the cost of integer polynomial factorization (for Garg & Schost) and
Chinese remaindering were always negligible.

In our timing results, “G&S Determ” refers to the deterministic algorithm as stated in Garg
and Schost (2009) and “Alg 7.1” is the algorithm we have presented here over finite fields,
without the verification step. We also developed and implemented a more adaptive, Monte
Carlo version of these algorithms, as briefly described at the end of Section 7.2. The basic
idea is to sample modulo x p − 1 for just one prime p ∈ Θ(t 2 log d ) that is good with high
probability, then to search for much smaller good primes. This good prime search starts at
a lower bound of order Θ(t 2) based on the birthday problem, and finds consecutively larger
primes until enough primes have been found to recover the symmetric polynomial in the
exponents (for Garg & Schost) or just the exponents (for our method). The corresponding
improved algorithms are referred to as “G&S MC” and “Alg 7.1++” in the table, respectively.

Table 7.3 summarizes some timings for these four algorithms on our benchmarking ma-
chine. Note that the numbers listed reflect the base-2 logarithm of the degree bound and the
sparsity bound for the randomly-generated test cases. The tests were all performed over the fi-
nite field Z/65521Z. This modulus was chosen for convenience of implementation, although
other methods such as the Ben-Or and Tiwari algorithm might be more efficient in this par-
ticlar field since discrete logarithms could be computed quickly. However, observe that our
algorithms (and those from Garg and Schost) have only poly-logarithmic dependence on the
field size, and so will eventually dominate.

The timings are mostly as expected based on our complexity estimates, and also confirm
our suspicion that primes of size O(t 2) are sufficient to avoid exponent collisions. It is satis-
fying but not particularly surprising to see that our “Alg 7.1++” is the fastest on all inputs, as
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log2 D T G&S Determ G&S MC Alg 7.1 Alg 7.1++
12 10 3.77 0.03 0.03 0.01
16 10 46.82 0.11 0.11 0.08
20 10 — 0.38 0.52 0.33
24 10 — 0.68 0.85 0.38
28 10 — 1.12 2.35 0.53
32 10 — 1.58 2.11 0.66
12 20 37.32 0.15 0.02 0.02
16 20 — 0.91 0.52 0.28
20 20 — 3.5 3.37 1.94
24 20 — 6.59 5.94 2.99
28 20 — 10.91 10.22 3.71
32 20 — 14.83 16.22 4.24
12 30 — 0.31 0.01 0.01
16 30 — 3.66 1.06 0.65
20 30 — 10.95 6.7 3.56
24 30 — 25.04 12.42 9.32
28 30 — 38.86 19.36 13.8
32 30 — 62.53 68.1 14.66
12 40 — 0.58 0.01 0.02
16 40 — 8.98 3.7 1.54
20 40 — 30.1 12.9 8.42
24 40 — 67.97 38.34 16.57
28 40 — — 73.69 36.24
32 40 — — — 40.79

Table 7.3: Finite Fields Algorithm Timings
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Noise Mean Error Median Error Max Error
0 4.440 e−16 4.402 e−16 8.003 e−16
±10−12 1.113 e−14 1.119 e−14 1.179 e−14
±10−9 1.149 e−11 1.191 e−11 1.248 e−11
±10−6 1.145 e−8 1.149 e−8 1.281 e−8

Table 7.4: Approximate Algorithm Stability

all the algorithms have a similar basic structure. Had we compared to the Ben-Or and Tiwari
or Zippel’s method, they would probably be more efficient for small sizes, but would be easily
beaten for large degree and arbitrary finite fields as their costs are super-polynomial.

The implementation of the approximate algorithm uses machinedoubleprecision (based
on the IEEE standard), the built-in C++ complex<double> type, and the popular Fastest
Fourier Transform in the West (FFTW) package for computing FFTs (Frigo and Johnson, 2005).
Our stability results are summarized in Table 7.4. Each test case was randomly generated with
degree at most 220 and at most 50 nonzero terms. We varied the precision as specified in the
table and ran 10 tests in each range. Observe that the error in our results was often less than
the ε error on the evaluations themselves.

7.6 Conclusions

We have presented two new algorithms, using the basic idea of Garg and Schost (2009), plus
our new technique of diversification, to gain improvements for sparse interpolation over large
finite fields and approximate complex numbers.

There is much room for improvement in both of these methods. For the case of finite
fields, the limitation to large finite fields of size at leastΩ(t 2d n ) is in some sense the interesting
case, since for very small finite fields it will be faster to use Ben-Or and Tiwari’s algorithm and
compute the discrete logs as required. However, the restriction on field size for our algorithms
does seem rather harsh, and we would like to reduce it, perhaps to a bound of size only t O(1).
This would have a tremendous advantage because working in an extension field to guarantee
that size would only add a logarithmic factor to the overall complexity. By contrast, working
an extension large enough to satisfy the conditions of our algorithm could add a factor of
O (̃log d ) to the complexity, which is significant for lacunary algorithms.

Over approximate complex numbers, our algorithm provides the first provably numeri-
cally stable method for sparse interpolation. However, this improved numerical stability is at
the expense of extra computational cost and (more significantly) extra black-box probes. For
many applications, the cost of probing the unknown function easily dominates the cost of
the interpolation algorithm, and therefore reducing the number of probes as much as possi-
ble is highly desirable. Ideally, we would like to have an approximate interpolation algorithm
with the numerical stability of ours, but using only O(t ) probes, as in Ben-Or and Tiwari’s
algorithm.
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Another area for potential improvement is in the bounds used for the number of possible
bad primes, in both algorithms. From our experiments and intuition, it seems that using
primes of size roughly O(t 2+ t log d ) should be sufficient, rather than the O(t 2 log d ) size our
current bounds require. However, proving this seems quite challenging. These and other
related bounds will be discussed at greater length in the next chapter.
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