
Everybody who has analyzed the logical theory of computers has
come to the conclusion that the possibilities of computers are
very interesting — if they could be made to be more complicated
by several orders of magnitude. If they had millions of times as
many elements, they could make judgments. They would have
time to calculate what is the best way to make the calculation that
they are about to make.

—Richard Feynman, “There’s plenty of room at the bottom” (1959)

Chapter 5

Adaptive multiplication

As we have seen, the multiplication of univariate polynomials is one of the most important
operations in mathematical computing, and in computer algebra systems in particular. How-
ever, existing algorithms are closely tied to the standard dense and sparse representations. In
this chapter, we present new algorithms for multiplication which allow the operands to be
stored in either the dense or sparse representation, and automatically adapt the algorithm to
the sparse structure of the input polynomials (in some sense). The result is a method that
is never significantly slower than any existing algorithm, but is significantly faster for a large
class of inputs.

Preliminary progress on some of these problems was presented at the Milestones in Com-
puter Algebra (MICA) conference in 2008 (Roche, 2008). The algorithms presented here have
also been accepted to appear in the Journal of Symbolic Computation (Roche, 2010).

5.1 Background

We start by reviewing the dense and sparse representations, as well as corresponding algo-
rithms for multiplication that have been developed. Let f ∈ R[x ] with degree less than n
written as

f = c0+ c1x + c2x 2+ · · ·+ cn−1x n−1, (5.1)

for c0, . . . , cn−1 ∈R. Recall that the dense representation of f is simply an array [c0, c1, . . . , cn−1]
of length n containing every coefficient in f .

Now suppose that at most t of the coefficients are nonzero, so that we can write

f = a 1x e1 +a 2x e2 + · · ·+a t x et , (5.2)
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CHAPTER 5. ADAPTIVE MULTIPLICATION

for a 1, . . . , a t ∈R and 0≤ e1 < · · ·< e t . Hence a i = ce i for 1≤ i ≤ t , and in particular e t = deg f .
The sparse representation of f is a list of coefficient-exponent tuples (a 1, e1), . . . , (a t , e t ). This
always requires O(t ) ring elements of storage (on the algebraic side of an algebraic IMM).
However, the exponents in this case could be multi-precision integers, and the total size of
their storage, on the integer side, is proportional to

∑

i (1+ log2 e i ) bits. Assuming every ex-
ponent is stored to the same precision, this is O(t log n ) bits in total. Since the integer expo-
nents are not stored in bits but in machine words, this can be reduced by a logarithmic factor
for scalable IMM problems, but we will ignore that technicality for the sake of clarity in the
present discussion.

The previous chapter discussed algorithms for dense polynomial multiplication in depth.
Recall that the O(n 2) school method was first improved by Karatsuba and Ofman (1963) to
O(n 1.59) with a two-way divide-and-conquer scheme, later generalized to k -way by Toom
(1963) and Cook (1966). Building on results of Schönhage and Strassen (1971) and Schön-
hage (1977), Cantor and Kaltofen (1991) developed an algorithm to multiply polynomials with
O(n log n loglog n ) operations in any algebra. This stands as the best asymptotic complexity
for polynomial multiplication.

In practice, all of these algorithms will be used in certain ranges, and so we employ the
usual notation of a multiplication time function M(n ), the cost of multiplying two dense poly-
nomials with degrees both less than n . Also define δ(n ) =M(n )/n . If f , g ∈R[x ]with different
degrees deg f < n , deg g < m , and n > m , by splitting f into dn/m e size-m blocks we can
compute the product f · g with cost O( n

m
M(m )), or O(n ·δ(m )).

Algorithms for sparse polynomial multiplication were briefly discussed in Chapter 2. In
this case, the school method also uses O(t 2) ring operations, but for sparse polynomials this
cannot be improved in the worst case. However, since the degrees could be very large, the cost
of exponent arithmetic becomes significant. The school method uses O(t 3 log n ) word oper-
ations and O(t 2) space. Yan (1998) reduces the number of word operations to O(t 2 log t log n )
with the “geobuckets” data structure. Finally, recent work by Monagan and Pearce (2007), fol-
lowing Johnson (1974), gets this same time complexity but reduces the space requirement to
O(t + r ), where r is the number of nonzero terms in the product.

The algorithms we present are for univariate polynomials. They can also be used for mul-
tivariate polynomial multiplication by using Kronecker substitution, as described previously
in section 1.2.4: Given two n-variate polynomials f , g ∈ R[x1, . . . ,xn ] with max degrees less
than d , substitute x i = y (2d )i−1 for 1 ≤ i ≤ n , multiply the univariate polynomials over R[y ],
then convert back. Of course there are many other ways to represent multivariate polynomi-
als, but we will not consider them further here.

5.2 Overview of Approach

The performance of an adaptive algorithm depends not only on the size of the input but also
on some inherent difficulty measure. Such algorithms match standard approaches in their
worst-case performance, but perform far better on many instances. This idea was first applied
to sorting algorithms and has proved to be useful both in theory and in practice (see Petersson
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and Moffat, 1995). Such techniques have also proven useful in symbolic computation, for
example the early termination strategy of Kaltofen and Lee (2003).

Hybrid algorithms combine multiple different approaches to the same problem to effec-
tively handle more cases (e.g., Duran, Saunders, and Wan, 2003). Our algorithms are also
hybrid in the sense that they provide a smooth gradient between existing sparse and dense
multiplication algorithms. The adaptive nature of the algorithms means that in fact they will
be faster than existing algorithms in many cases, while never being (asymptotically) slower.

The algorithms we present will always proceed in three stages. First, the polynomials are
read in and converted to a different representation which effectively captures the relevant
measure of difficulty. Second, we multiply the two polynomials in the alternate representa-
tion. Finally, the product is converted back to the original representation.

The second step is where the multiplication is actually performed, and it is this step alone
that depends on the difficulty of the particular instance. Therefore this step should be the
dominating cost of the entire algorithm, and in particular the cost of the conversion steps
must be linear in the size of the input polynomials.

In Section 5.3, we give the first idea for adaptive multiplication, which is to write a polyno-
mial as a list of dense “chunks”. The second idea, presented in Section 5.4, is to write a polyno-
mial with “equal spacing” between coefficients as a dense polynomial composed with a power
of the indeterminate. Section 5.5 shows how to combine these two ideas to make one algo-
rithm which effectively captures both difficulty measures. We examine how our algorithms
perform in practice with some benchmarking against existing algorithms in Section 5.6. Fi-
nally, a few conclusions and ideas for future directions are discussed in Section 5.7.

5.3 Chunky Polynomials

The basic idea of chunky multiplication is a straightforward combination of the standard
sparse and dense representations, providing a natural gradient between the two approaches
for multiplication. We note that a similar idea was noticed (independently) around the same
time by Fateman (2008, page 11), although the treatment here is much more extensive.

For f ∈R[x ] of degree n , the chunky representation of f is a sparse polynomial with dense
polynomial “chunks” as coefficients:

f = f 1x e1 + f 2x e2 + · · ·+ f t x et , (5.3)

with f i ∈ R[x ] and e i ∈N for each 1≤ i ≤ t . We require only that e i+1 > e i +deg f i for 1≤ i ≤
t −1, and each f i has nonzero constant coefficient.

Recall the notation introduced above of δ(n ) =M(n )/n . A unique feature of our approach
is that we will actually use this function to tune the algorithm. That is, we assume a subroutine
is given to evaluate δ(n ) for any chosen value n .

If n is a word-sized integer, then the computation of δ(n )must use a constant number of
word operations. If n is more than word-sized, then we are asking about the cost of multiply-
ing two dense polynomials that cannot fit in memory, so the subroutine should return∞ in
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such cases. Practically speaking, the δ(n ) evaluation will usually be an approximation of the
actual value, but for what follows we assume the computed value is always exactly correct.

Furthermore, we require δ(n ) to be an increasing function which grows more slowly than
linearly, meaning that for any a ,b , d ∈Nwith a <b ,

δ(a +d )−δ(a )≥δ(b +d )−δ(b ). (5.4)

These conditions are clearly satisfied for all the dense multiplication algorithms and corre-
sponding M(n ) functions discussed above, including the piecewise function used in practice.

The conversion of a sparse or dense polynomial to the chunky representation proceeds
in two stages: first, we compute an “optimal chunk size” k , and then we use this computed
value as a parameter in the actual conversion algorithm. The product of the two polynomials
is then computed in the chunky representation, and finally the result is converted back to the
original representation. The steps are presented in reverse order in the hope that the goals at
each stage are more clear.

5.3.1 Multiplication in the chunky representation

Multiplying polynomials in the chunky representation uses sparse multiplication on the outer
loop, treating each dense polynomial chunk as a coefficient, and dense multiplication to find
each product of two chunks.

For f , g ∈R[x ] to be multiplied, write f as in (5.3) and g as

g = g 1x d 1 + g 2x d 2 + · · ·+ g s x d s , (5.5)

with s ∈ N and similar conditions on each g i ∈ R[x ] and d i ∈ N as in (5.3). Without loss of
generality, assume also that t ≥ s , that is, f has more chunks than g . To multiply f and g , we
need to compute each product f i g j for 1 ≤ i ≤ t and 1 ≤ j ≤ s and put the resulting chunks
into sorted order. It is likely that some of the chunk products will overlap, and hence some
coefficients will also need to be summed.

By using heaps of pointers as in (Monagan and Pearce, 2007), the chunks of the result are
computed in order, eliminating unnecessary additions and using little extra space. A min-
heap of size s is filled with pairs (i , j ), for i , j ∈ N, and ordered by the corresponding sum of
exponents e i + d j . Each time we compute a new chunk product f i · g j , we check the new
exponent against the degree of the previous chunk, in order to determine whether to make a
new chunk in the product or add to the previous one. The details of this approach are given
in Algorithm 5.1.

After using this algorithm to multiply f and g , we can easily convert the result back to the
dense or sparse representation in linear time. In fact, if the output is dense, we can preallocate
space for the result and store the computed product directly in the dense array, requiring only
some extra space for the heap H and a single intermediate product hnew.
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Algorithm 5.1: Chunky Multiplication

Input: f , g as in (5.3) and (5.5)
Output: The product f · g = h in the chunky representation

1 α← f 1 · g 1 using dense multiplication
2 b ← e1+d 1

3 H ←min-heap with pairs (1, j ) for j = 2, 3, . . . , s , ordered by exponent sums
4 if i ≥ 2 then insert (2, 1) into H
5 while H is not empty do
6 (i , j )← extract-min(H )
7 β ← f i · g j using dense multiplication
8 if b +degα< e i +d j then
9 write αx b as next term of h

10 α←β ; b ← e i +d j

11 else α←α+βx e i+d j−b stored as a dense polynomial
12 if i < t then insert (i +1, j ) into H

13 write αx b as final term of h

Theorem 5.1. Algorithm 5.1 correctly computes the product of f and g using

O

�

∑

deg f i≥deg g j
1≤i≤t , 1≤j≤s

(deg f i ) ·δ(deg g j ) +
∑

deg f i<deg g j
1≤i≤t , 1≤j≤s

(deg g j ) ·δ(deg f i )
�

ring operations and O(t s · log s · log(deg f g ))word operations.

Proof. Correctness is clear from the definitions. The bound on ring operations comes from
Step 7 using the fact that δ(n ) =M(n )/n . The cost of additions on Step 11 is linear and hence
also within the stated bound.

The cost of word operations is incurred in removing from and inserting to the heap on
Steps 6 and 12. Because these steps are executed no more than t f t g times, the size of the heap
is never more than t g , and each exponent sum is bounded by the degree of the product, the
stated bound is correct.

Notice that the cost of word operations is always less than the cost would be if we had mul-
tiplied f and g in the standard sparse representation. We therefore focus only on minimizing
the number of ring operations in the conversion steps that follow.

5.3.2 Conversion given optimal chunk size

The general chunky conversion problem is, given f , g ∈ R[x ], both either in the sparse or
dense representation, to determine chunky representations for f and g which minimize the
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cost of Algorithm 5.1. Here we consider a simpler problem, namely determining an optimal
chunky representation for f given that g has only one chunk of size k .

The following corollary comes directly from Theorem 5.1 and will guide our conversion
algorithm on this step.

Corollary 5.2. Given f ∈R[x ] as in (5.3), the number of ring operations required to multiply f
by a single dense polynomial with degree less than k is

O

�

δ(k )
∑

deg f i≥k

deg f i + k
∑

deg f i<k

δ(deg f i )
�

For any high-degree chunk (i.e., deg f i ≥ k ), we see that there is no benefit to making
the chunk any larger, as the cost is proportional to the sum of the degrees of these chunks. In
order to minimize the cost of multiplication, then, we should not have any chunks with degree
greater than k (except possibly in the case that every coefficient of the chunk is nonzero), and
we should minimize

∑

δ(deg f i ) for all chunks with size less than k .

These observations form the basis of our approach in Algorithm 5.2 below. For an input
polynomial f ∈R[x ], each “gap” of consecutive zero coefficients in f is examined, in order. We
determine the optimal chunky conversion if the polynomial were truncated at that gap. This
is accomplished by finding the previous gap of highest degree that should be included in the
optimal chunky representation. We already have the conversion for the polynomial up to that
gap (from a previous step), so we simply add on the last chunk and we are done. At the end,
after all gaps have been examined, we have the optimal conversion for the entire polynomial.

Let a i ,b i ∈ Z for 0≤ i ≤m be the sizes of each consecutive “gap” of zero coefficients and
“block” of nonzero coefficients, in order. Each a i and b i will be nonzero except possibly for
a 0 (if f has a nonzero constant coefficient), and

∑

0≤i≤m (a i +b i ) = deg f +1. For example, the
polynomial

f = 5x 10+3x 11+9x 13+20x 19+4x 20+8x 21

has a 0 = 10,b0 = 2, a 1 = 1,b1 = 1, a 2 = 5, and b2 = 3.

Finally, reusing notation from the previous subsection, define d i to be the size of the poly-
nomial up to (not including) gap i , i.e., d i =

∑

0≤j<i (a j + b j ). And define e i to be the size
including gap i , i.e., e i = d i +a i .

For the gap at index `, for 1≤ `≤m , we store the optimal chunky conversion of f mod x d `

by a linked list of indices of all gaps in f that should also be gaps between chunks in the op-
timal chunky representation. We also store, in c`, the cost in ring operations of multiplying
f mod x d ` (in this optimal representation) by a single chunk of size k , scaled by 1/k . In par-
ticular, since from the discussion above we can conclude that every chunk in this optimal
representation has size at most k , and writing s i for the size of the i ’th chunk in the optimal
chunky representation of f mod x d ` , c` is equal to

∑

δ(s i ).

The conversion algorithm works by considering, for each `, the gap of highest degree that
should be included in the optimal chunky representation of f mod x d ` . If this gap has index
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i , then from above we have c` = c i +δ(d `− e i ). This is because the optimal chunky represen-
tation will consist exactly of the chunks in f mod x d i , followed by the last chunk, which goes
from gap i to gap ` and has size d `− e i .

Hence to determine the optimal chunky conversion of f mod xd ` we must find an index
i < ` that minimizes c i+δ(d `−e i ). To see how this search is performed efficiently, first observe
that, from the discussion above, we need not consider chunks of size greater than k , and
therefore at this stage indices i where d `− e i > k may be excluded. Furthermore, from (5.4),
we know that, if 1 ≤ i < j < ` and c i +δ(d `− e i ) < c j +δ(d `− e j ), then this same inequality
continues to hold as ` increases. That is, as soon as an earlier gap results in a smaller cost than
a later one, that earlier gap will continue to beat the later one.

Thus we can essentially precompute the values of mini<`(c i +δ(d ` − e i )) by maintaining
a stack of index-index pairs. A pair (i , j ) of indices on the top of the stack indicates that c i +
δ(d `− e i ) is minimal as long as `≤ j . The second pair of indices indicates the minimal value
from gap j to the gap of the second index of the second pair, and so forth up to the bottom
of the stack and the last gap. Observe that the first index decreases and the second index
increases as we move from the top of the stack to the bottom. The initial pair at the bottom of
the stack is (0, m +1), indicating that gap 0, corresponding to the power of x that divides f (if
any), is always beneficial to take in the chunky representation.

The details of this rather complicated algorithm are given in Algorithm 5.2.

For an informal justification of correctness, consider a single iteration through the main
for loop. At this point, we have computed all optimal costs c1, c2, . . . , c`−1, and the lists of gaps
to achieve those costs L 1, L 2, . . . , L `−1. We also have computed the stack S, indicating which of
the gaps up to index `−2 is optimal and when.

The while loop on Step 5 removes all gaps from the stack which are no longer relevant,
either because their cost is now beaten by a previous gap (when j < `), or because the size of
the resulting chunk would be greater than k and therefore unnecessary to consider.

If the condition of Step 7 is true, then there is no index at which gap (`−1) should be used,
so we discard it.

Otherwise, the gap at index `− 1 is good at least some of the time, so we proceed to the
task of determining the largest gap index v at which gap (`− 1)might still be useful. First, in
Steps 14–16, we repeatedly check whether gap (`− 1) always beats the gap at the top of the
stack S, and if so remove it. After this process, either no gaps remain on the stack, or we have
a range r ≤ v ≤ j in which binary search can be performed to determine v .

From the definitions, d m+1 = deg f + 1, and so the list of gaps L m+1 returned on the final
step gives the optimal list of gaps to include in f mod x deg f +1, which is of course just f itself.

Theorem 5.3. Algorithm 5.2 returns the optimal chunky representation for multiplying f by a
dense size-k chunk. The running time of the algorithm is linear in the size of the input repre-
sentation of f .

Proof. Correctness follows from the discussions above.
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Algorithm 5.2: Chunky Conversion Algorithm

Input: k ∈N, f ∈R[x ], and integers a i ,b i , d i for i = 0, 1, 2, . . . , m as above
Output: A list L of the indices of gaps to include in the optimal chunky representation

of f when multiplying by a single chunk of size k
1 L 0← (empty); L 1← 0
2 c0← 0; c1←δ(b0)
3 S← (0, m +1)
4 for `= 2, 3, . . . , m +1 do
5 while top pair (i , j ) from S satisfies j < ` or d `− e i > k do
6 Remove (i , j ) from S

7 if S is not empty and the top pair (i , j ) from S satisfies
c i +δ(d `− e i )≤ c`−1+δ(d `− e`−1) then

8 L `← L i , i
9 c`← c i +δ(d `− e i )

10 else
11 L `← L `−1, (`−1)
12 c`← c`−1+δ(d `− e`−1)
13 r ← `
14 while top pair (i , j ) from S satisfies c i +δ(d j − e i )> c`−1+δ(d j − e`−1) do
15 r ← j
16 Remove (i , j ) from S

17 if S is empty then (i , j )← (0, m +1)
18 else (i , j )← top pair from S
19 v ← least index with r ≤ v < j s.t. c`−1+δ(d v − e`−1)> c i +δ(d v − e i )
20 Push (`−1, v ) onto the top of S

21 return L m+1
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For the complexity analysis, first note that the maximal size of S, as well as the number of
saved values a i ,b i , d i , s i , L i , is m , the number of gaps in f . Clearly m is less than the number
of nonzero terms in f , so this is bounded above by the sparse or dense representation size. If
the lists L i are implemented as singly-linked lists, sharing nodes, then the total extra storage
for the algorithm is O(m ).

The total number of iterations of the two while loops corresponds to the number of gaps
that are removed from the stack S at any step. Since at most one gap is pushed onto S at
each step, the total number of removals, and hence the total cost of these while loops over all
iterations, is O(m ).

Now consider the cost of Step 19 at each iteration. If the input is given in the sparse
representation, we just perform a binary search on the interval from r to j , for a total cost
of O(m log m ) over all iterations. Because m is at most the number of nonzero terms in f ,
m log m is bounded above by the sparse representation size, so the theorem is satisfied for
sparse input.

When the input is given in the dense representation, a binary search is again used on
Step 19, but we start with a one-sided binary search, also called “galloping” search. This
search starts from either r or j , depending on which interval endpoint v is closest to. The
cost of this search is at a single iteration is O(log min{v − r, i 2 − v }). Notice that the interval
(r, j ) in the stack is then effectively split at the index v , so intuitively whenever more work is
required through one iteration of this step, the size of intervals is reduced, so future iterations
should have lower cost.

More precisely, a loose upper bound in the worst case of the total cost over all iterations is
O(
∑u

i=1 2i · (u − i +1)), where u = dlog2 m e. This is less than 2u+2, which is O(m ), giving linear
cost in the size of the dense representation.

5.3.3 Determining the optimal chunk size

All that remains is to compute the optimal chunk size k that will be used in the conversion
algorithm from the previous section. This is accomplished by finding the value of k that min-
imizes the cost of multiplying two polynomials f , g ∈ R[x ], under the restriction that every
chunk of f and of g has size k .

If f is written in the chunky representation as in (5.3), there are many possible choices for
the number of chunks t , depending on how large the chunks are. So define t (k ) to be the least
number of chunks if each chunk has size at most k , i.e., deg f i < k for 1 ≤ i ≤ t (k ). Similarly
define s (k ) for g ∈R[x ]written as in (5.5).

Therefore, from the cost of multiplication in Theorem 5.1, in this part we want to compute
the value of k that minimizes

t (k ) · s (k ) ·k ·δ(k ). (5.6)

Say deg f = n . After O(n ) preprocessing work (making pointers to the beginning and end
of each “gap”), t (k ) could be computed using O(n/k ) word operations, for any value k . This
leads to one possible approach to computing the value of k that minimizes (5.6) above: simply
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compute (5.6) for each possible k = 1, 2, . . . , max{deg f , deg g }. This naïve approach is too
costly for our purposes, but underlies the basic idea of our algorithm.

Rather than explicitly computing each t (k ) and s (k ), we essentially maintain chunky rep-
resentations of f and g with all chunks having size less than k , starting with k = 1. As k
increases, we count the number of chunks in each representation, which gives a tight approx-
imation to the actual values of t (k ) and f (k ), while achieving linear complexity in the size of
either the sparse or dense representation.

To facilitate the “update” step, a minimum priority queue Q (whose specific implemen-
tation depends on the input polynomial representation) is maintained containing all gaps in
the current chunky representations of f and g . For each gap, the key value (on which the pri-
ority queue is ordered) is the size of the chunk that would result from merging the two chunks
adjacent to the gap into a single chunk.

So for example, if we write f in the chunky representation as

f = (4+0x +5x 2) ·x 12+(7+6x +0x 2+0x 3+8x 4) ·x 50,

then the single gap in f will have key value 3+35+5= 43, More precisely, if f is written as in
(5.3), then the i th gap has key value

deg f i+1+ e i+1− e i +1. (5.7)

Each gap in the priority queue also contains pointers to the two (or fewer) neighboring
gaps in the current chunky representation. Removing a gap from the queue corresponds to
merging the two chunks adjacent to that gap, so we will need to update (by increasing) the
key values of any neighboring gaps accordingly.

At each iteration through the main loop in the algorithm, the smallest key value in the
priority queue is examined, and k is increased to this value. Then gaps with key value k are
repeatedly removed from the queue until no more remain. This means that each remaining
gap, if removed, would result in a chunk of size strictly greater than k . Finally, we compute
δ(k ) and an approximation of (5.6).

Since the purpose here is only to compute an optimal chunk size k , and not actually to
compute chunky representations of f and g , we do not have to maintain chunky represen-
tations of the polynomials as the algorithm proceeds, but merely counters for the number of
chunks in each one. Algorithm 5.3 gives the details of this computation. Note in particular
that Q f and Q g initially contain every gap — even empty ones — so that

�

�Q f

�

� = t f − 1 and
�

�Q g

�

�= t g −1 initially.

All that remains is the specification of the data structures used to implement the priority
queues Q f and Q g . If the input polynomials are in the sparse representation, we simply use
standard binary heaps, which give logarithmic cost for each removal and update. Because the
exponents in this case are multi-precision integers, we might imagine encountering chunk
sizes that are larger than the largest word-sized integer. But as discussed previously, such
a chunk size would be meaningless since a dense polynomial with that size cannot be repre-
sented in memory. So our priority queues may discard any gaps whose key value is larger than
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Algorithm 5.3: Optimal Chunk Size Computation

Input: f , g ∈R[x ]
Output: k ∈N that minimizes t (k ) · s (k ) ·k ·δ(k )

1 Q f ,Q g ←minimum priority queues initialized with all gaps in f and g , respectively
2 k , kmin← 1; cmin← t f t g

3 while Q f and Q g are not both empty do
4 k ← smallest key value from Q f or Q g

5 while Q f has an element with key value ≤ k do
6 Remove a k -valued gap from Q f and update neighbors

7 while Q g has an element with key value ≤ k do
8 Remove a k -valued gap from Q g and update neighbors

9 ccurrent← (|Q f |+1) · (|Q g |+1) ·k ·δ(k )
10 if ccurrent < cmin then
11 kmin← k ; cmin← ccurrent

12 return kmin

word-sized. This guarantees all keys in the queues are word-size integers, which is necessary
for the complexity analysis later.

If the input polynomials are dense, we need a structure which can perform removals and
updates in constant time, using O(deg f +deg g ) time and space. For Q f , we use an array with
length deg f of (possibly empty) linked lists, where the list at index i in the array contains all
elements in the queue with key i . (An array of this length is sufficient because each key value
in Q f is at least 2 and at most 1+deg f .) We use the same data structure for Q g , and this clearly
gives constant time for each remove and update operation.

To find the smallest key value in either queue at each iteration through Step 4, we simply
start at the beginning of the array and search forward in each position until a non-empty list
is found. Because each queue element update only results in the key values increasing, we
can start the search at each iteration at the point where the previous search ended. Hence the
total cost of Step 4 for all iterations is O(deg f +deg g ).

The following lemma proves that our approximations of t (k ) and s (k ) are reasonably tight,
and will be crucial in proving the correctness of the algorithm.

Lemma 5.4. At any iteration through Step 10 in Algorithm 5.3, |Q f |< 2t (k ) and |Q g |< 2s (k ).

Proof. First consider f . There are two chunky representations with each chunk of degree
less than k to consider: the optimal having t (k ) chunks and the one implicitly computed by
Algorithm 5.3 with |Q f |+1 chunks. Call these f̄ and f̂ , respectively.

We claim that any single chunk of the optimal f̄ contains at most three constant terms
of chunks in the implicitly-computed f̂ . If this were not so, then two chunks in f̂ could be
combined to result in a single chunk with degree less than k . But this is impossible, since all
such pairs of chunks would already have been merged after the completion of Step 5.
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Therefore every chunk in f̄ contains at most two constant terms of distinct chunks in f̂ .
Since each constant term of a chunk is required to be nonzero, the number of chunks in f̂ is
at most twice the number in f̄ . Hence |Q f |+ 1≤ 2t (k ). An identical argument for g gives the
stated result.

Now we are ready for the main result of this subsection.

Theorem 5.5. Algorithm 5.3 computes a chunk size k such that t (k ) · s (k ) ·k ·δ(k ) is at most 4
times the minimum value. The worst-case cost of the algorithm is linear in the size of the input
representations.

Proof. If k is the value returned from the algorithm and k ∗ is the value which actually min-
imizes (5.6), the worst that can happen is that the algorithm computes the actual value of
c f (k )c g (k )k δ(k ), but overestimates the value of c f (k ∗)c g (k ∗)k ∗δ(k ∗). This overestimation
can only occur in c f (k ∗) and c g (k ∗), and each of those by only a factor of 2 from Lemma 5.4.
So the first statement of the theorem holds.

Write c for the total number of nonzero terms in f and g . The initial sizes of the queues Q f

and Q g is O(c ). Since gaps are only removed from the queues (after they are initialized), the
total cost of all queue operations is bounded above by O(c ), which in turn is bounded above
by the sparse and dense sizes of the input polynomials.

If the input is sparse and we use a binary heap, the cost of each queue operation is O(log c ),
for a total cost of O(c log c ), which is a lower bound on the size of the sparse representations. If
the input is in the dense representation, then each queue operation has constant cost. Since
c ∈O(deg f +deg g ), the total cost linear in the size of the dense representation.

5.3.4 Chunky Multiplication Overview

Now we are ready to examine the whole process of chunky polynomial conversion and multi-
plication. First we need the following easy corollary of Theorem 5.3.

Corollary 5.6. Let f ∈ R[x ], k ∈ N, and f̂ be any chunky representation of f where all chunks
have degree at least k , and f̄ be the representation returned by Algorithm 5.2 on input k . The
cost of multiplying f̄ by a single chunk of size ` < k is then less than the cost of multiplying f̂ by
the same chunk.

Proof. Consider the result of Algorithm 5.2 on input `. We know from Theorem 5.3 that this
gives the optimal chunky representation for multiplication of f with a size-` chunk. But the
only difference in the algorithm on input ` and input k is that more pairs are removed at each
iteration on Step 5 on input `.

This means that every gap included in the representation f̄ is also included in the optimal
representation. We also know that all chunks in f̄ have degree less than k , so that f̂ must
have fewer gaps that are in the optimal representation than f̄ . It follows that multiplication
of a size-` chunk by f̄ is more efficient than multiplication by f̂ .
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To review, the entire process to multiply f , g ∈ R[x ] using the chunky representation is as
follows:

1. Compute k from Algorithm 5.3.

2. Compute chunky representations of f and g using Algorithm 5.2 with input k .

3. Multiply the two chunky representations using Algorithm 5.1.

4. Convert the chunky result back to the original representation.

Because each step is optimal (or within a constant bound of the optimal), we expect this
approach to yield the most efficient chunky multiplication of f and g . In any case, we know
it will be at least as efficient as the standard sparse or dense algorithm.

Theorem 5.7. Computing the product of f , g ∈ R[x ] never uses more ring operations than ei-
ther the standard sparse or dense polynomial multiplication algorithms.

Proof. In Algorithm 5.3, the values of t (k ) · s (k ) · k ·δ(k ) for k = 1 and k =min{deg f , deg g }
correspond to the costs of the standard sparse and dense algorithms, respectively. Further-
more, it is easy to see that these values are never overestimated, meaning that the k returned
from the algorithm which minimizes this formula gives a cost which is not greater than the
cost of either standard algorithm.

Now call f̂ and ĝ the implicit representations from Algorithm 5.3, and f̄ and ḡ the repre-
sentations returned from Algorithm 5.2 on input k . We know that the multiplication of f̂ by ĝ
is more efficient than either standard algorithm from above. Since every chunk in ĝ has size k ,
multiplying f̄ by ĝ will have an even lower cost, from Theorem 5.3. Finally, since every chunk
in f̄ has size at most k , Corollary 5.6 tells us that the cost is further reduced by multiplying f̄
by ḡ .

The proof is complete from the fact that conversion back to either original representation
takes linear time in the size of the output.

5.4 Equal-Spaced Polynomials

Next we consider an adaptive representation which is in some sense orthogonal to the chunky
representation. This representation will be useful when the coefficients of the polynomial are
not grouped together into dense chunks, but rather when they are spaced evenly apart.

Let f ∈R[x ]with degree n , and suppose the exponents of f are all divisible by some integer
k . Then we can write f = a 0+a 1x k +a 2x 2k + · · · . So by letting f D = a 0+a 1x +a 2x 2+ · · · , we
have f = f D ◦x k (where the symbol ◦ indicates functional composition).

One motivating example suggested by Michael Monagan is that of homogeneous polyno-
mials. Recall that a multivariate polynomial h ∈ R[x1, . . . ,xn ] is homogeneous of degree d if
every nonzero term of h has total degree d . It is well-known that the number of variables in a
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homogeneous polynomial can be effectively reduced by one by writing yi = x i/xn for 1≤ i < n
and h = x d

n · ĥ, for ĥ ∈ R[y1, . . . , yn−1] an (n − 1)-variate polynomial with max degree d . This
leads to efficient schemes for homogeneous polynomial arithmetic.

But this is only possible if (1) the user realizes this structure in their polynomials, and (2)
every polynomial used is homogeneous. Otherwise, a more generic approach will be used,
such as the Kronecker substitution mentioned in the introduction. Choosing some integer
` > d , we evaluate h(y , y `, y `2 , . . . , y `n−1), and then perform univariate arithmetic overR[y ]. But
if h is homogeneous, a special structure arises: every exponent of y is of the form d+i (`−1) for
some integer i ≥ 0. Therefore we can write h(y , . . . , y `n−1) = (h̄◦y `−1)·y d , for some h̄ ∈R[y ]with
much smaller degree. The algorithms presented in this section will automatically recognize
this structure and perform the corresponding optimization to arithmetic.

The key idea is equal-spaced representation, which corresponds to writing a polynomial
f ∈R[x ] as

f = ( f D ◦x k ) ·x d + fS , (5.8)

with k , d ∈N, f D ∈R[x ] dense with degree less than n/k −d , and fS ∈R[x ] sparse with degree
less than n . The polynomial fS is a “noise” polynomial which contains the comparatively few
terms in f whose exponents are not of the form i k +d for some i ≥ 0.

Unfortunately, converting a sparse polynomial to the best equal-spaced representation
seems to be difficult. To see why this is the case, consider the much simpler problem of ver-
ifying that a sparse polynomial f can be written as ( f D ◦ x k ) · x d . For each exponent e i of a
nonzero term in f , this means confirming that e i ≡ d mod k . But the cost of computing each
e i mod k is roughly O(

∑

(log e i )δ(log k )), which is a factor of δ(log k ) greater than the size of
the input. Since k could be as large as the exponents, we see that even verifying a proposed k
and d takes too much time for the conversion step. Surely computing such a k and d would
be even more costly!

Therefore, for this subsection, we will always assume that the input polynomials are given
in the dense representation. In Section 5.5, we will see how by combining with the chunky
representation, we effectively handle equal-spaced sparse polynomials without ever having
to convert a sparse polynomial directly to the equal-spaced representation.

5.4.1 Multiplication in the equal-spaced representation

Let g ∈ R[x ] with degree less than m and write g = (g D ◦ x `) · x e + gS as in (5.8). To compute
f · g , simply sum up the four pairwise products of terms. All these except for the product
( f D ◦x k ) · (g D ◦x `) are performed using standard sparse multiplication methods.

Notice that if k = `, then ( f D ◦x k ) · (g D ◦x `) is simply ( f D · g D) ◦x k , and hence is efficiently
computed using dense multiplication. However, if k and ` are relatively prime, then almost
any term in the product can be nonzero.

This indicates that the gcd of k and ` is very significant. Write r and s for the greatest
common divisor and least common multiple of k and `, respectively. To multiply ( f D ◦x k ) by
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(g D ◦ x `), we perform a transformation similar to the process of finding common denomina-
tors in the addition of fractions. First split f D ◦ x k into s/k (or `/r ) polynomials, each with
degree less than n/s and right composition factor x s , as follows:

f D ◦x k = ( f 0 ◦x s )+ ( f 1 ◦x s ) ·x k +( f 2 ◦x s ) ·x 2k · · ·+( f s/k−1 ◦x s ) ·x s−k

Similarly split g D ◦x ` into s/` polynomials g 0, g 1, . . . , g s/`−1 with degrees less than m/s and
right composition factor x s . Then compute all pairwise products f i · g j , and combine them
appropriately to compute the total sum (which will be equal-spaced with right composition
factor x r ).

Algorithm 5.4 gives the details of this method.

Algorithm 5.4: Equal Spaced Multiplication

Input: f = ( f D ◦x k ) ·x d + fS , g = (g D ◦x `) ·x e + gS ,
with f D = a 0+a 1x +a 2x 2+ · · · , g D =b0+b1x +b2x 2+ · · ·
Output: The product f · g

1 r ← gcd(k ,`), s ← lcm(k ,`)
2 for i = 0, 1, . . . , s/k −1 do
3 f i ← a i +a s+i x +a 2s+i x 2+ · · ·

4 for i = 0, 1, . . . , s/`−1 do
5 g i ←b i +bs+i x +b2s+i x 2+ · · ·

6 hD ← 0
7 for i = 0, 1, . . . , s/k −1 do
8 for j = 0, 1, . . . , s/`−1 do
9 Compute f i · g j by dense multiplication

10 hD ← hD +(( f i · g j ) ◦x s ) ·x i k+j `

11 Compute ( f D ◦x k ) · gS , (g D ◦x `) · fS , and fS · gS by sparse multiplication
12 return hD ·x e+d +( f D ◦x k ) · gS ·x d +(g D ◦x `) · fS ·x e + fS · gS

As with chunky multiplication, this final product is easily converted to the standard dense
representation in linear time. The following theorem gives the complexity analysis for equal-
spaced multiplication.

Theorem 5.8. Let f , g be as above such that n >m , and write t f , t g for the number of nonzero
terms in fS and gS , respectively. Then Algorithm 5.4 correctly computes the product f · g using

O
�

(n/r ) ·δ(m/s )+nt g /k +m t f /`+ t f t g

�

ring operations.

Proof. Correctness follows from the preceding discussion.

The polynomials f D and g D have at most n/k and m/` nonzero terms, respectively. So
the cost of computing the three products in Step 11 by using standard sparse multiplication is
O(nt g /k+m t f /`+t f t g ) ring operations, giving the last three terms in the complexity measure.
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The initialization in Steps 2–5 and the additions in Steps 10 and 12 all have cost bounded
by O(n/r ), and hence do not dominate the complexity.

All that remains is the cost of computing each product f i · g j by dense multiplication on
Step 9. From the discussion above, deg f i < n/s and deg g j < m/s , for each i and j . Since
n > m , (n/s ) > (m/s ), and therefore this product can be computed using O((n/s )δ(m/s ))
ring operations. The number of iterations through Step 9 is exactly (s/k )(s/`). But s/`= k/r ,
so the number of iterations is just s/r . Hence the total cost for this step is O((n/r )δ(m/s )),
which gives the first term in the complexity measure.

It is worth noting that no additions of ring elements are actually performed through each
iteration of Step 10. The proof is as follows. If any additions were performed, we would have

i 1k + j1`≡ i 2k + j2` (mod s )

for distinct pairs (i 1, j1) and (i 2, j2). Without loss of generality, assume i 1 6= i 2, and write

(i 1k + j1`)− (i 2k + j2`) =qs

for some q ∈Z. Rearranging gives

(i 1− i 2)k = (j2− j1)`+qs .

Because `|s , the left hand side is a multiple of both k and `, and therefore by definition must
be a multiple of s , their lcm. Since 0≤ i 1, i 2 < s/k , |i 1− i 2|< s/k , and therefore |(i 1− i 2)k |< s .
The only multiple of s with this property is of course 0, and since k 6= 0 this means that i 1 = i 2,
a contradiction.

The following theorem compares the cost of the equal-spaced multiplication algorithm to
standard dense multiplication, and will be used to guide the approach to conversion below.

Theorem 5.9. Let f , g , m , n , t f , t g be as before. Algorithm 5.4 does not use asymptotically more
ring operations than standard dense multiplication to compute the product of f and g as long
as t f ∈O(δ(n )) and t g ∈O(δ(m )).

Proof. Assuming again that n >m , the cost of standard dense multiplication is O(nδ(m )) ring
operations, which is the same as O(nδ(m )+mδ(n )).

Using the previous theorem, the number of ring operations used by Algorithm 5.4 is

O ((n/r )δ(m/s )+nδ(m )/k +mδ(n )/`+δ(n )δ(m )) .

Because all of k ,`, r, s are at least 1, and since δ(n ) < n , every term in this complexity
measure is bounded by nδ(m )+mδ(n ). The stated result follows.
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5.4.2 Converting to equal-spaced

The only question when converting a polynomial f to the equal-spaced representation is how
large we should allow tS (the number of nonzero terms in of fS) to be. From Theorem 5.9
above, clearly we need tS ∈δ(deg f ), but we can see from the proof of the theorem that having
this bound be tight will often give performance that is equal to the standard dense method
(not worse, but not better either).

Let t be the number of nonzero terms in f . Since the goal of any adaptive method is to
in fact be faster than the standard algorithms, we use the lower bound of δ(n ) ∈ Ω(log n ) and
t ≤ deg f +1 and require that tS < log2 t .

As usual, let f ∈R[x ]with degree less than n and write

f = a 1x e1 +a 2x e2 + · · ·+a t x et ,

with each a i ∈R\{0}. The reader will recall that this corresponds to the sparse representation
of f , but keep in mind that we are assuming f is given in the dense representation; f is written
this way only for notational convenience.

The conversion problem is then to find the largest possible value of k such that all but at
most log2 t of the exponents e j can be written as k i +d , for any nonnegative integer i and a
fixed integer d . Our approach to computing k and d will be simply to check each possible
value of k , in decreasing order. To make this efficient, we need a bound on the size of k .

Lemma 5.10. Let n ∈N and e1, . . . , e t be distinct integers in the range [0, n ]. If at least t − log2 t
of the integers e i are congruent to the same value modulo k , for some k ∈N, then

k ≤
n

t −2 log2 t −1
.

Proof. Without loss of generality, order the e i ’s so that 0≤ e1 < e2 < · · ·< e t ≤ n . Now consider
the telescoping sum (e2− e1) + (e3− e2) + · · ·+ (e t − e t−1). Every term in the sum is at least 1,
and the total is e t − e1, which is at most n .

Let S ⊆ {e1, . . . , e t } be the set of at most log2 t integers not congruent to the others modulo
k . Then for any e i , e j /∈ S, e i ≡ e j mod k . Therefore k |(e j − e i ). If j > i , this means that
e j − e i ≥ k .

Returning to the telescoping sum above, each e j ∈ S is in at most two of the sum terms
e i − e i−1. So all but at most 2 log2 t of the terms are at least k . Since there are exactly t − 1
terms, and the total sum is at most n , we conclude that (t − 2 log2 t − 1) · k ≤ n . The stated
result follows.

We now employ this lemma to develop an algorithm to determine the best values of k and
d , given a dense polynomial f . Starting from the largest possible value from the bound, for
each candidate value k , we compute each e i mod k , and find the majority element — that is,
a common modular image of more than half of the exponents.

85



CHAPTER 5. ADAPTIVE MULTIPLICATION

To compute the majority element, we use a now well-known approach first credited to
Boyer and Moore (1991) and Fischer and Salzberg (1982). Intuitively, pairs of different ele-
ments are repeatedly removed until only one element remains. If there is a majority element,
this remaining element is it; only one extra pass through the elements is required to check
whether this is the case. In practice, this is accomplished without actually modifying the list.

Algorithm 5.5: Equal Spaced Conversion

Input: Exponents e1, e2, . . . , e t ∈N and n ∈N such that 0≤ e1 < e2 < · · ·< e t = n
Output: k , d ∈N and S ⊆ {e1, . . . , e t } such that e i ≡ d mod k for all exponents e i not in S,

and |S| ≤ log2 t .
1 if t < 32 then k ← n
2 else k ←bn/(t −1−2 log2 t )c
3 while k ≥ 2 do
4 d ← e1 mod k ; j ← 1
5 for i = 2, 3, . . . , t do
6 if e i ≡ d mod k then j ← j +1
7 else if j > 0 then j ← j −1
8 else d ← e i mod k ; j ← 1

9 S←{e i : e i 6≡ d mod k }
10 if |S| ≤ log2 t then return k , d , S
11 k ← k −1

12 return 1, 0, ;

Given k , d ,S from the algorithm, in one more pass through the input polynomial, f D and
fS are constructed such that f = ( f D ◦x k ) ·x d + fS . After performing separate conversions for
two polynomials f , g ∈R[x ], they are multiplied using Algorithm 5.4.

The following theorem proves correctness when t > 4. If t ≤ 4, we can always trivially set
k = e t − e1 and d = e1 mod k to satisfy the stated conditions.

Theorem 5.11. Given integers e1, . . . , e t and n, with t > 4, Algorithm 5.5 computes the largest
integer k such that at least t − log2 t of the integers e i are congruent modulo k , and uses O(n )
word operations.

Proof. In a single iteration through the while loop, we compute the majority element of the
set {e i mod k : i = 1, 2, . . . , t }, if there is one. Because t > 4, log2 t < t /2. Therefore any element
which occurs at least t−log2 t times in a t -element set is a majority element, which proves that
any k returned by the algorithm is such that at least t − log2 t of the integers e i are congruent
modulo k .

From Lemma 5.10, we know that the initial value of k on Step 1 or 2 is greater than the
optimal k value. Since we start at this value and decrement to 1, the largest k satisfying the
stated conditions is returned.

For the complexity analysis, first consider the cost of a single iteration through the main
while loop. Since each integer e i is word-sized, computing each e i mod k has constant cost,
and this happens O(t ) times in each iteration.
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If t < 32, each of the O(n ) iterations has constant cost, for total cost O(n ).

Otherwise, we start with k = bn/(t − 1− 2 log2 t )c and decrement. Because t ≥ 32, t /2 >
1+ 2 log2 t . Therefore (t − 1− 2 log2 t ) > t /2, so the initial value of k is less than 2n/t . This
gives an upper bound on the number of iterations through the while loop, and so the total
cost is O(n )word operations, as required.

Algorithm 5.5 can be implemented using only O(t ) space for the storage of the exponents
e1, . . . , e t , which is linear in the size of the output, plus the space required for the returned set
S.

5.5 Chunks with Equal Spacing

The next question is whether the ideas of chunky and equal-spaced polynomial multiplica-
tion can be effectively combined into a single algorithm. As before, we seek an adaptive com-
bination of previous algorithms, so that the combination is never asymptotically worse than
either original idea.

An obvious approach would be to first perform chunky polynomial conversion, and then
equal-spaced conversion on each of the dense chunks. Unfortunately, this would be asymp-
totically less efficient than equal-spaced multiplication alone in a family of instances, and
therefore is not acceptable as a proper adaptive algorithm.

The algorithm presented here does in fact perform chunky conversion first, but instead
of performing equal-spaced conversion on each dense chunk independently, Algorithm 5.5 is
run simultaneously on all chunks in order to determine, for each polynomial, a single spacing
parameter k that will be used for every chunk.

Let f = f 1x e1+ f 2x e2+· · ·+ f t x et in the optimal chunky representation for multiplication by
another polynomial g . We first compute the smallest bound on the spacing parameter k for
any of the chunks f i , using Lemma 5.10. Starting with this value, we execute the while loop
of Algorithm 5.5 for each polynomial f i , stopping at the largest value of k such that the total
size of all sets S on Step 9 for all chunks f i is at most log2 t f , where t f is the total number of
nonzero terms in f .

The polynomial f can then be rewritten (recycling the variables f i and e i ) as

f = ( f 1 ◦x k ) ·x e1 +( f 2 ◦x k ) ·x e2 + · · ·+( f t ◦x k ) ·x et + fS ,

where fS is in the sparse representation and has O(log t f ) nonzero terms.

Let k ∗ be the value returned from Algorithm 5.5 on input of the entire polynomial f . Using
k ∗ instead of k , f could still be written as above with fS having at most log2 t f terms. There-
fore the value of k computed in this way is always greater than or equal to k ∗ if the initial
bounds are correct. This will be the case except when every chunk f i has few nonzero terms
(and therefore t is close to t f ). However, this reduces to the problem of converting a sparse
polynomial to the equal-spaced representation, which seems to be intractable, as discussed
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above. So our cost analysis will be predicated on the assumption that the computed value of
k is never smaller than k ∗.

We perform the same equal-spaced conversion for g , and then use Algorithm 5.1 to com-
pute the product f · g , with the difference that each product f i · g j is computed by Algo-
rithm 5.4 rather than standard dense multiplication. As with equal-spaced multiplication,
the products involving fS or gS are performed using standard sparse multiplication.

Theorem 5.12. The algorithm described above to multiply polynomials with equal-spaced
chunks never uses more ring operations than either chunky or equal-spaced multiplication,
provided that the computed “spacing parameters” k and ` are not smaller than the values re-
turned from Algorithm 5.5.

Proof. Let n , m be the degrees of f , g respectively and write t f , t g for the number of nonzero
terms in f , g respectively. The sparse multiplications involving fS and gS use a total of

t g log t f + t f log t g +(log t f )(log t g )

ring operations. Both the chunky or equal-spaced multiplication algorithms always require
O(t gδ(t f )+t f δ(t g )) ring operations in the best case, and sinceδ(n )∈Ω(log n ), the cost of these
sparse multiplications is never more than the cost of the standard chunky or equal-spaced
method.

The remaining computation is that to compute each product f i · g j using equal-spaced
multiplication. Write k and ` for the powers of x in the right composition factors of f and g
respectively. Theorem 5.8 tells us that the cost of computing each of these products by equal-
spaced multiplication is never more than computing them by standard dense multiplication,
since k and ` are both at least 1. Therefore the combined approach is never more costly than
just performing chunky multiplication.

To compare with the cost of equal-spaced multiplication, assume that k and ` are the
actual values returned by Algorithm 5.5 on input f and g . This is the worst case, since we
have assumed that k and ` are never smaller than the values from Algorithm 5.5.

Now consider the cost of multiplication by a single equal-spaced chunk of g . This is the
same as assuming g consists of only one equal-spaced chunk. Write d i = deg f i for each
equal-spaced chunk of f , and r, s for the gcd and lcm of k and `, respectively. If m > n ,
then of course m is larger than each d i , so multiplication using the combined method will
use O((m/r )

∑

δ(d i/s )) ring operations, compared to O((m/r )δ(n/s )) for the standard equal-
spaced algorithm, by Theorem 5.8.

Now recall the cost equation (5.6) used for Algorithm 5.3:

c f (b ) · c g (b ) ·b ·δ(b ),

where b is the size of all dense chunks in f and g . By definition, c f (n ) = 1, and c g (n )≤m/n , so
we know that c f (n )c g (n )n δ(n )≤m δ(n ). Because the chunk sizes d i were originally chosen
by Algorithm 5.3, we must therefore have m

∑t
i=1δ(d i ) ≤ mδ(n ). The restriction that the δ

function grows more slowly than linear then implies that (m/r )
∑

δ(d i/s ) ∈O((m/r )δ(n/s )),
and so the standard equal-spaced algorithm is never more efficient in this case.
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When m ≤ n , the number of ring operations to compute the product using the combined
method, again by Theorem 5.8, is

O



δ(m/s )
∑

d i≥m

(d i/r )+ (m/r )
∑

d i<m

δ(d i/s )



 , (5.9)

compared with O((n/r )δ(m/s )) for the standard equal-spaced algorithm. Because we al-
ways have

∑t
i=1 d i ≤ n , the first term of (5.9) is O((n/r )δ(m/s )). Using again the inequal-

ity m
∑t

i=1δ(d i ) ≤ mδ(n ), along with the fact that mδ(n ) ∈ O(nδ(m )) because m ≤ n , we
see that the second term of (5.9) is also O((n/r )δ(m/s )). Therefore the cost of the combined
method is never more than the cost of equal-spaced multiplication alone.

5.6 Implementation and benchmarking

We implemented the full chunky conversion and multiplication algorithm for dense polyno-
mials in MVP. We compare the results against the standard dense and sparse multiplication
algorithms in MVP. Previously, in sections 2.5 and 4.4, we saw that the multiplication rou-
tines in MVP are competitive with existing software. Therefore our comparison against these
routines is fair and will provide useful information on the utility of the new algorithms.

Recall that the chunky conversion algorithm requires a way to approximate δ(n ) for any
integer n . For this, we actually used the timing results reported in Section 4.4 for dense
polynomial multiplication in MVP on our testing machine. Using this data and the known
crossover points, we did a least-squares fit to the three curves

nδ1(n ) = a 1n 2+b1n + c1

nδ2(n ) = a 2n log2 3+b2n + c2

nδ3(n ) = a 32dlog2 ne �log2 n
�

+b3n + c3,

for the ranges of classical, Karatsuba, and FFT-based multiplication, respectively. Clearly this
could be automated as part of a tuning phase, but this has not yet been implemented. How-
ever, observe that as only the relative times are important, it is possible that some default
timing data could still be useful on different machines.

Choosing benchmarks for assessing the performance of these algorithms is a challenging
task. Our algorithms adapts to chunkiness in the input, but this measure is difficult to quan-
tify. Furthermore, while we can (and do) generate examples that are more or less chunky, it is
difficult to justify whether such polynomials actually appear in practice.

With these reservations in mind, we proceed to describe the benchmarking trials we per-
formed to compare chunky multiplication against the standard dense and sparse algorithms.
First, to generate random polynomials with some varying “chunkiness” properties, we used
the following approach. The parameters to the random polynomial generation are the usual
degree n and desired sparsity t , as well as a third parameter c , which should be a small pos-
itive integer. The polynomials were then generated by randomly choosing t exponents, suc-
cessively, and for each exponent choosing a random nonzero coefficient. To avoid trivially
easy cases, we always set the constant coefficient and the coefficient of x d to be nonzero.
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Chunkiness c Standard sparse Chunky multiplication
0 .981 1.093

10 .969 1.059
20 .984 1.075
25 .899 .971
30 .848 1.262
32 .778 .771
34 .749 .313
36 .729 .138
38 .646 .084
40 .688 .055

Table 5.1: Benchmarks for adaptive multiplication with varying chunkiness

However, to introduce “chunkiness” as c grows larger, the exponents of successive terms
were not always chosen independently. With probability proportional to 1/c , the next ex-
ponent was chosen independently and randomly from {1, 2, . . . , d − 1}. However, with high
probability proportional to (c − 1)/c , the next successive exponent was chosen to be “close”
to the previous one. Specifically, in this case the next exponent was chosen randomly from
a set of size proportional to n/2c surrounding the previously-chosen exponent. This devia-
tion from independence has the effect of creating clusters of nonzero coefficients, when the
parameter c is sufficiently large.

We make no claims that this randomization has any basis in a particular application, but
point out that it does provide more of a challenge to our algorithms than the simplistic ap-
proach of clustering nonzero terms into completely dense chunks with no intervening gaps.
Also observe that when c = 0, we simply have a sparse polynomial with randomly-chosen
support and no particular chunky structure. Furthermore, when c is on the order of log2 n ,
the generated polynomial is likely to consist of only a few very dense chunks. So by varying
c in this range, we see the performance of the chunky multiplication algorithm on a range of
cases.

Specifically, for our benchmarks we fixed the degree d at one million and the sparsity t at
3000. With these parameters, the usual dense and sparse algorithms in MVP have roughly the
same cost. We then ran a number of tests varying the chunkiness parameter c between 0 and
40. In every case, the dense algorithm used close to 1.91 CPU seconds for a single operation.
The timings reported in Table 5.1 are relative to this time, the cost of the dense multiplication
algorithm. As usual, a number less than one means that algorithm was faster than the dense
algorithm for the specified choice of c . Observe that although the sparsity t was invariant for
all test cases, the normal sparse algorithm still derives some benefit from polynomials with
high chunkiness, simply because of the reduced number of terms in the output.

With the slight anomaly at c = 30 (probably due to some algorithmic “confusion” and in-
accuracy in δ(n )), we see that the algorithm performs quite well, and as expected according
to our theoretical results. In particular, the chunky multiplication algorithm is always either
very nearly the same as existing methods, or much better than them. We also report, per-
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haps surprisingly, that the overhead associated with the chunky conversion is negligible in
nearly every case. In fact, we can see this in the first few benchmarks with small c , where the
chunky representation produced is simply the dense representation; the performance hit for
the unnecessary conversion, at least in these cases, is less than 10 percent.

5.7 Conclusions and Future Work

Two methods for adaptive polynomial multiplication have been given where we can compute
optimal representations (under some set of restrictions) in linear time in the size of the input.
Combining these two ideas into one algorithm inherently captures both measures of diffi-
culty, and will in fact have significantly better performance than either the chunky or equal-
spaced algorithm in many cases.

However, converting a sparse polynomial to the equal-spaced representation in linear
time is still out of reach, and this problem is the source of the restriction of Theorem 5.12.
Some justification for the impossibility of such a conversion algorithm was given, due to the
fact that the exponents could be long integers. However, we still do not have an algorithm for
sparse polynomial to equal-spaced conversion under the (probably reasonable) restriction
that all exponents be word-sized integers. A linear-time algorithm for this problem would
be useful and would make our adaptive approach more complete, though slightly more re-
stricted in scope.

On the subject of word size and exponents, we assumed at the beginning that O(t log n )
words are required to store the sparse representation of a polynomial. This fact is used to jus-
tify that some of the conversion algorithms with O(t log t ) complexity were in fact linear-time
in the size of the input. However, the original assumption is not very good for many prac-
tical cases, e.g., where all exponents fit into single machine words. In such cases, the input
size is O(t ), but the conversion algorithms still use O(t log t ) operations, and hence are not
linear-time. We would argue that they are still useful, especially since the sparse multipli-
cation algorithms are quadratic, but there is certainly room for improvement in the sparse
polynomial conversion algorithms.

Yet another area for further development is multivariate polynomials. We have mentioned
the usefulness of Kronecker substitution, but developing an adaptive algorithm to choose the
optimal variable ordering would give significant improvements. An interesting observation
is that using the chunky conversion under a dense Kronecker substitution seems similar in
many ways to the recursive dense representation of a multivariate polynomial. Examining
the connections here more carefully would be interesting, and could give more justification
to the practical utility of the algorithms we have presented.

Finally, even though we have proven that our algorithms produce optimal adaptive rep-
resentations, it is always under some restriction of the way that choice is made (for example,
requiring to choose an “optimal chunk size” k first, and then compute optimal conversions
given k ). These results would be significantly strengthened by proving lower bounds over
all available adaptive representations of a certain type, but such results have thus far been
elusive.
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