
The biggest difference between time and space is that you can’t
reuse time.

—Merrick Furst

Chapter 4

Multiplication without extra space

The multiplication of dense univariate polynomials is one of the most fundamental prob-
lems in mathematical computing. In the last fifty years, numerous fast multiplication algo-
rithms have been developed, and these algorithms are used in practice today in a variety of
applications. However, all the fast multiplication algorithms require a linear amount of in-
termediate storage space to compute the result. For each of the two most popular fast mul-
tiplication algorithms, we develop variants with the same speed but which use much less
temporary storage.

We first carefully define the problem under consideration, as well as the notation we will
use throughout this chapter. Consider two polynomials f , g ∈R[x ], each with degree less than
n , written

f = a 0+a 1x +a 2x 2+ · · ·+a n−1x n−1

g =b0+b1x +b2x 2+ · · ·+bn−1x n−1.

We consider algorithms for dense univariate polynomial multiplication in an algebraic IMM.
Formally, the input and output will all be on the algebraic side. The read-only input space will
contain the 2n coefficients of f and g , and correct algorithms must write the 2n − 1 coeffi-
cients of their product into the output space and halt. In all algorithms discussed, the cost of
ring operations dominates that of integer arithmetic with machine words, and so we state all
costs in terms of ring operations.

Some of the results in this chapter were presented at ISSAC 2009 and 2010 (Roche, 2009;
Harvey and Roche, 2010).

4.1 Previous results

Observe that the product f · g can be written

2n−2
∑

i=0







min(i ,n−1)
∑

j=max(0,i−n+1)

a j b i−j






x i .
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Using only a single temporary ring element as an accumulator, we can compute each inner
summation, one at a time, to determine all the coefficients of the product. This is called the
naïve or school method for multiplication. It works over any ring, uses O(n 2) ring operations,
and requires only a constant amount of temporary working space.

So-called fast multiplication algorithms are those whose cost is less than quadratic. We
now briefly examine a few such algorithms.

4.1.1 Karatsuba’s algorithm

Karatsuba was the first to develop a sub-quadratic multiplication algorithm (1963). This is a
divide-and-conquer method and works by first splitting each of f and g into two blocks with
roughly half the size. Writing k = bn/2c, the four resulting polynomials are

f 0 = a 0+a 1x + · · ·+a k−1x k−1 f 1 = a k +a k+1x + · · ·a n−1x n−k−1

g 0 =b0+b1x + · · ·+bk−1x k−1 g 1 =bk +bk+1x + · · ·bn−1x n−k−1.

We can therefore write f = f 0+ f 1x k and g = g 0+ g 1x k , so their product is f 0 g 0+( f 0 g 1+
g 1 f 0)x k + f 1 g 1x 2k . Gauss again was the first to notice (in the context of complex number
multiplication) that this product can also be written

f · g = f 0 g 0+
��

f 0+ f 1
��

g 0+ g 1
�

− f 0 g 0− f 1 g 1
�

x k + f 1 g 1x 2k .

Using this formulation, the product can be computed using exactly 3 recursive calls of
approximately half the size, followed byO(n ) additions and subtractions. The total asymptotic
cost is therefore O(n log2 3), which is O(n 1.59).

To be specific, label the three intermediate products as follows:

α= f 0 · g 0, β = f 0 · f 1, γ= ( f 0+ f 1) · (g 0+ g 1). (4.1)

So the final product of f and g is computed as

f · g =α+(γ−α−β ) ·x k +β ·x 2k . (4.2)

A straightforward implementation might allocate n units of extra storage at each recursive
step to store the intermediate product γ, resulting in an algorithm that uses a linear amount
of extra space and performs approximately 4n additions of ring elements besides the three
recursive calls.

There is of course significant overlap between the three terms of (4.2). To see this more
clearly, split each polynomial α,β ,γ into its low-order and high-order coefficients as with f
and g . Then we have (with no overlap):

f · g =α0+(γ0+α1−α0−β0)x k +(γ1+β0−α1−β1)x 2k +β1x 3k (4.3)
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Examining this expansion, we see that the difference α1 − β0 occurs twice, so the num-
ber of additions can be reduced to 7n/2 at each recursive step. Popular implementations of
Karatsuba’s algorithm already make use of this optimisation.

A few authors have also examined the problem of minimising the extra storage space re-
quired for Karatsuba’s algorithm. Maeder (1993) showed how to compute tight bounds on the
amount of extra temporary storage required at the top level of the algorithm, allowing tem-
porary space to be allocated once for all recursive calls. This bound is approximately 2n in
Maeder’s formulation, where the focus was specifically on long integer multiplication.

An improvement to this for polynomial multiplication was given by Thomé (2002), who
showed how to structure Karatsuba’s algorithm so that only about n extra ring elements need
to be stored.

It should be mentioned that both these algorithms are already working in essentially the
same model as an IMM, re-using the output space repeatedly in an attempt to minimise the
amount of extra space required. These approaches are also discussed by Brent and Zimmer-
mann (2010) in a broader context. Those authors, who have extensive experience in fast im-
plementations of multiplication algorithms, claim that “The efficiency of an implementation
of Karatsuba’s algorithm depends heavily on memory usage”. Our experiments, given at the
end of this chapter, help support this claim.

The first algorithm that we will present has the same asymptotic time complexity as Karat-
suba’s algorithm and the variants above, but only requires O(log n ) temporary storage.

4.1.2 FFT-based multiplication

The fastest practical algorithms for integer and polynomial multiplication are based on the
fast Fourier transform algorithm discussed in the previous chapter. These algorithms use
the FFT to evaluate the unknown product polynomial at a number of points, then apply the
inverse FFT to compute the coefficients of the product from these evaluation points.

To compute the product of f and g , two univariate polynomials with degrees less than n
as above, we use a 2m -PRU ω, where 2m ≥ 2n − 1. We need a PRU of this order because the
product polynomial has size at most 2n−1, and we need at least this many points to uniquely
recover it with polynomial interpolation.

The first step is to compute DFTω( f ) and DFTω(g ). Observe that each DFT has size 2m ,
which is at most 2(2n−1)−1= 4n−3. Since each input polynomial has degree at less than n ,
both coefficient vectors must be padded with zeroes to almost four times their width, at least
if the usual radix-2 FFT algorithm is used. Even making use of the output space, and using
in-place FFTs, this step requires extra temporary space for about 6n ring elements.

From the initial DFTs, we have f (ωi ) and g (ωi ) for 0 ≤ i < 2m . Write h = f · g for their
product in R[x ]. From the DFTs of f and g , we can easily write down DFTω(h) using exactly
2m multiplications in R, since h(ωi ) = f (ωi ) · g (ωi ) for any i . Finally, we compute the inverse
FFT of the evaluations of h to recover the coefficients of the product. Since 2m could be about
twice as large as deg h, we may have to trim some zeros from the end of this output before
copying the coefficients of h to the output space.
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In summary, we compute

f · g =
1

n
DFTω−1

�

DFTω( f ) ∗DFTω(g )
�

,

where ∗ signifies pairwise multiplication of vector elements. The last two steps (writing down
DFTω(h) and computing the inverse FFT) can be computed in-place in the storage already
allocated for the forward DFTs. Therefore the total amount of extra space required for the
standard FFT-based multiplication algorithm is approximately 6n ring elements.

This basic formulation of FFT-based multiplication has been unchanged for many years,
while the main focus of algorithmic development has been on the troublesome requirement
that R contains an n-PRU ω. When it does not, we can construct a so-called virtual root of
unity by working in a larger field and incurring a small multiplicative factor in the complexity.

For n-bit integer multiplication, Schönhage and Strassen (1971) showed how to achieve
bit complexity O(n log n loglog n ) for this problem. This has recently been improved by Fürer
(2007) and De, Kurur, Saha, and Saptharishi (2008) to O(n · log n ·2log∗n ), where log∗n indicates
the iterated logarithm, defined as the number of times logarithm must be taken to reach a
constant value. Recall from Section 1.4, however, that these subtleties of bit complexity are
not meaningful in the IMM model.

Schönhage and Strassen’s algorithm can also be applied to polynomial multiplication in
the algebraic IMM model, giving a cost of O(n log n loglog n ) ring operations for degree-n
polynomial multiplication, but only when the ring R admits division by 2. Schönhage (1977)
used radix-3 FFTs to extend to rings of characteristic 2, and Cantor and Kaltofen (1991) further
extended to arbitrary algebras, including non-commutative algebras, with the same asymp-
totic cost. It remains open whether the new improvements in the bit complexity of multipli-
cation can be applied to the polynomial case.

In any case, this work explicitly dodges these issues by simply assuming that the ring R
already contains an n-PRU ω. That is, we assume any of the above methods has been used
to add virtual roots of unity already, and optimise from there on. The second algorithm we
present reduces the amount of temporary storage required for FFT-based multiplication, over
rings that already contain the proper 2m -PRU, from 6n ring elements as in the standard algo-
rithm above, to O(1).

4.1.3 Lower bounds

There are a few lower bounds on the multiplication problem that merit mentioning here.
First, in time complexity, Bürgisser and Lotz (2004) proved that at least Ω(n log n ) ring op-
erations are required for degree-n polynomial multiplication over C[x ] in the bounded coef-
ficients model. This model encompasses algebraic circuits where the scalars (in our notation
from Chapter 1, edge labels) are all at most 2 in absolute value. In particular, their result im-
plies lower bounds for multiplication by universal IMM algorithms that contain no branch
instructions.

More to the point of the current discussion, a few time-space tradeoffs for multiplication
were given among the large number of such results that appeared a few decades ago. Savage
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and Swamy (1979) proved that Ω(n 2) time × space is required for boolean circuits computing
binary integer multiplication. Here space is defined as the maximum number of nodes in the
circuit that must reside in memory at any given point during the computation.

Algebraic circuits, or straight-line programs, are said to model “oblivious” algorithms,
where the structure of the computation is fixed for a given input size. In fact, all the multi-
plication algorithms discussed above have this property. However, branching programs are
more general in that they allow the computation path to change depending on the input. For
binary integers, these are essentially an extension of binary decision trees. In this model,
Abrahamson (1986) proved that at leastΩ(n 2/ log2 n ) time× space is required for integer mul-
tiplication. In this model, space is measured as the logarithm of the number of nodes in the
branching program, which corresponds to how much “state” information must be stored in
an execution of the program to keep track of where it is in the computation.

The algorithms we present will break these lower bounds for time times temporary space
in the algebraic IMM model. Our algorithms do not branch by examining ring elements, and
therefore can be modelled by algebraic circuits or straight-line programs. They break these
lower bounds by allowing both reads and writes to the output space. By re-using the out-
put space, we show that these time-space tradeoffs can be broken. Observe that this follows
similar results for more familiar problems such as sorting, which requires Ω(n 2) time × space
in these models as well, but of course can be solved in-place in O(n log n ) time, in the IMM
model.

4.2 Space-efficient Karatsuba multiplication

We present an algorithm for polynomial multiplication which has the same mathematical
structure as Karatsuba’s, and the same time complexity, but which makes careful re-use of
the output space so that only O(log n ) temporary space is required for the computation. The
description of the algorithm is cleanest when multiplying polynomials inR[x ]with equal sizes
that are both divisible by 2, so for simplicity we will present that case first. The corresponding
methods for odd-sized operands, different-sized operands, and multiple-precision integers
will follow fairly easily from this case.

4.2.1 Improved algorithm: general formulation

The key to obtaining O(log n ) extra space for Karatsuba-like multiplication is by solving a
slightly more general problem. In particular, two extra requirements are added to the algo-
rithm at each recursive step.

Condition 4.1. The low-order n coefficients of the output space are pre-initialized and must be
added to. That is, half of the product space is initialized with a polynomial h ∈ R[x ] of degree
less than n.

With Condition 4.1, the computed result should now equal h + f · g .
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Condition 4.2. The first operand to the multiplication f is given as two polynomials which
must first be summed before being multiplied by g . That is, rather than a single polynomial
f ∈R[x ], we are given two polynomials f (0), f (1) ∈R[x ], each with degree less than n.

With both these conditions, the result of the computation should be h +( f (0)+ f (1)) · g .

Of course, these conditions should not be made on the very first call to the algorithm, and
this will be discussed in the next subsection. We are now ready to present the algorithm in
the easiest case that f , g ∈R[x ] with deg f = deg g = 2k −1 for some k ∈N. If A is an array in
memory, we use the notation of A[i ..j ] for the sub-array from indices i to j (inclusive), with
0 ≤ i ≤ j < |A |. If array A contains a polynomial f , then the array element A[i ] is the coef-
ficient of x i in f . The three read-only input operands f (0), f (1), g are stored in arrays A, B ,C ,
respectively, and the output is written to array D. From the first condition, D[0..2k − 1] is
initialized with h.

In the notation of an algebraic IMM, we can think of the read-only arrays A, B ,C as residing
in the input memory M I on the algebraic side, and D is the output memory space MO on
the algebraic side. In some recursive calls, however, A, B ,C may actually reside in the output
space, although this does not change the algorithm. Incidentally, this is the first IMM problem
we have seen where valid instances (I ,O,O ′) have all three parts non-empty.

Algorithm 4.1: Space-efficient Karatsuba multiplication

Input: k ∈N and f (0), f (1), g , h ∈R[x ]with degrees less than 2k in arrays A, B ,C , D,
respectively

Output: h +( f (0)+ f (1)) · g stored in array D
1 D[k ..2k −1]←D[k ..2k −1]+D[0..k −1]
2 D[3k −1..4k −2]← A[0..k −1]+A[k ..2k −1]+ B [0..k −1]+ B [k ..2k −1]
3 Recursive call with A ′←C [0..k −1], B ′←C [k ..2k −1], C ′←D[3k −1..4k −2], and

D ′←D[k ..3k −2]
4 D[3k −1..4k −2]←D[k ..2k −1]+D[2k ..3k −2]
5 Recursive call with A ′← A[0..k −1], B ′← B [0..k −1], C ′←C [0..k −1], and

D ′←D[0..2k −2]
6 D[2k ..3k −2]←D[2k ..3k −2]−D[k ..2k −2]
7 D[k ..2k −1]←D[3k −1..4k −2]−D[0..k −1]
8 Recursive call with A ′← A[k ..2k −1], B ′← B [k ..2k −1], C ′←C [k ..2k −1], and

D ′←D[2k ..4k −2]
9 D[k ..2k −1]←D[k ..2k −1]−D[2k ..3k −1]

10 D[2k ..3k −2]←D[2k ..3k −2]−D[3k ..4k −2]

Table 4.1 summarizes the computation by showing the actual values (in terms of the input
polynomials and intermediate products) stored in each part of the output array D after each
step of the algorithm. Between the recursive calls on Steps 3, 5, and 8, we perform some
additions and rearranging to prepare for the next multiplication. Notice that a few times a
value is added somewhere only so that it can be cancelled off at a later point in the algorithm.
An example of this is the low-order half of h, h0, which is added to h1 on Step 1 only to be
cancelled when we subtract (α0+h0) from this quantity later, on Step 7.
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D[0..k −1] D[k ..2k −1] D[2k ..3k −2]∗ D[3k −1..4k −2]∗

0 h0 h1 — —
1 h0 h0+h1 — —
2 h0 h0+h1 — f (0)0 + f (0)1 + f (1)0 + f (1)1

3 h0 h0+h1+γ0 γ1 f (0)0 + f (0)1 + f (1)0 + f (1)1

4 h0 h0+h1+γ0 γ1 h0+h1+γ0+γ1

5 h0+α0 α1 γ1 h0+h1+γ0+γ1

6 h0+α0 α1 γ1−α1 h0+h1+γ0+γ1

7 h0+α0 h1+γ0+γ1−α0 γ1−α1 h0+h1+γ0+γ1

8 h0+α0 h1+γ0+γ1−α0 β0+γ1−α1 β1

9 h0+α0 h1+α1+γ0−α0−β0 β0+γ1−α1 β1

10 h0+α0 h1+α1+γ0−α0−β0 β0+γ1−α1−β1 β1

∗The last two sub-arrays shift by one to D[2k ..3k −1] and D[3k ..4k −2] at Step 8.

Table 4.1: Values stored in D through the steps of Algorithm 4.1

The final value stored in D after Step 10 is

(h0+α0)+ (h1+α1+γ0−α0−β0)x k

+(β0+γ1−α1−β1)x 2k +β1 ·x 3k , (4.4)

which we notice is exactly the same as (4.3) with the addition of h0 + h1x k as specified by
Condition 4.1.

The base case of the algorithm will be to switch over to the classical algorithm for multi-
plication; the exact size at which the classical algorithm should be preferred will depend on
the implementation. Even with the extra conditions of our problem, the classical algorithm
can still be implemented with O(1) space, using a single accumulator in temporary memory,
as discussed earlier. This proves the correctness of the following theorem:

Theorem 4.3. Let f (0), f (1), g , h ∈R[x ] be polynomials each with degree one less than n = 2b for
some b ∈ N, with all polynomials stored in read-only input memory except h, which is stored
initially in the output space. Algorithm 4.1 correctly computes h + ( f (0) + f (1)) · g using O(1)
temporary storage on the algebraic side and O(log n ) temporary storage of word-sized integers.
The time complexity is O(n log2 3), or O(n 1.59).

Proof. The size of the input polynomials n must be a power of 2 so that each recursive call is
on even-sized arguments. To be more precise, the algorithm should be modified so that it ini-
tially checks whether the input size is below a certain (constant) threshold, in which case the
space-efficient classical algorithm is called. Correctness follows from the discussion above.
We can see that there are exactly three recursive calls on input of one-half the size of the orig-
inal input, and this gives the stated time complexity bounds.

Finally, observe that the temporary storage required by the algorithm on a single recur-
sive call consists of a constant number of pointers, stored on the integer side of the algebraic

59



CHAPTER 4. MULTIPLICATION WITHOUT EXTRA SPACE

IMM, and a single accumulator on the algebraic side. This accumulator can be re-used by
the recursive calls, but the pointers must remain, so that the algorithm may proceed when
the recursive calls terminate. Since the depth of recursion is log2 n , this means that O(log n )
temporary space is required on the integer side, as stated.

4.2.2 Initial calls

The initial call to compute the product of two polynomials f and g will not satisfy Conditions
4.1 and 4.2 above. So there must be top-level versions of the algorithm which do not solve the
more general problem of h +( f (0)+ f (1)) · g .

First, denote by SE_KarMult_1+2 Algorithm 4.1, indicating that both conditions 1 and 2
are satisfied by this version.

Working backwards, we then denote by SE_KarMult_1 an algorithm that is similar to Al-
gorithm 4.1, but which does not satisfy Condition 4.2. Namely, the input will be just three
polynomials f , g , h ∈ R[x ], with h stored in the output space, and the algorithm computes
h + f · g . In this version, two of the additions on Step 2 are eliminated. The function call on
Step 3 is still to SE_KarMult_1+2, but the other two on Steps 5 and 8 are recursive calls to
SE_KarMult_1.

Similarly, SE_KarMult will be the name of the top-level call which does not satisfy either
Condition 4.1 or 4.2, and therefore simply computes a single product f ·g into an uninitialized
output space. Here again we save two array additions on Step 2, and in addition Step 1 is
replaced with the instruction:

D[0..k −1]←C [0..k −1]+C [k ..2k −1].

This allows the first two function calls on Steps 3 and 5 to be recursive calls to SE_KarMult,
and only the last one on Step 8 is a call to SE_KarMult_1.

The number of additions (and subtractions) at each recursive step determine the hidden
constant in the O(n 1.59) time complexity measure. We mentioned that a naïve implementation
of Karatsuba’s algorithm uses 4n additions at each recursive step, and it is easy to improve
this to 7n/2. By inspection, Algorithm 4.1 uses 9n/2+O(1) additions at each recursive step,
and therefore both SE_KarMult_1 and SE_KarMult use only 7n/2+O(1) additions at each
recursive step. So SE_KarMult_1 and SE_KarMultmatch the best known existing algorithms
in the number of additions required, and SE_KarMult_1+2 uses only n+O(1)more additions
and subtractions than this.

Asymptotically, the cost of calls to SE_KarMult_1+2will eventually dominate, incurring a
slight penalty in extra arithmetic operations. However, most of the initial calls, particularly for
smaller values of n (where Karatsuba’s algorithm is actually used), will be to SE_KarMult_1 or
SE_KarMult, and should not be any more costly in time than a good existing implementation.
This gives us hope that our space-efficient algorithm might be useful in practice; this hope is
confirmed in Section 4.4.
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4.2.3 Unequal and odd-sized operands

So far our algorithm only works when both input polynomials have the same degree, and that
degree is exactly one less than a power of two. This is necessary because the size of both
operands at each recursive call to Algorithm 4.1, as stated, must be even. Special cases to
handle the cases when the input polynomials have even degree (and therefore an odd size)
or different degrees will resolve these issues and give a general-purpose multiplication algo-
rithm.

First consider the case that deg f (0), deg f (1), deg g , and deg h are all equal to 2k for some
k ∈ N, so that each polynomial has an odd number of coefficients. In order to use Algo-
rithm 4.1 in this case, we first pull off the low-order coefficients of each polynomial, writing

f (0) = a 0+x f̂ (0)

f (1) =b0+x f̂ (1)

g = c0+x ĝ

h = d 0+d 1x +x 2ĥ

Now we can rewrite the desired result as follows:

h +( f (0)+ f (1)) · g = d 0+d 1x +x 2ĥ +(a 0+b0+x f̂ (0)+x f̂ (1)) · (c0+x ĝ )

= d 0+d 1x +x (a 0+b0)ĝ +x c0 f̂ (0)+x c0 f̂ (1)+x 2(ĥ +( f̂ (0)+ f̂ (1)) · ĝ ).

Therefore this result can be computed with a single call to Algorithm 4.1 with even-length
arguments, ĥ +( ˆf (0)+ ˆf (1)) · ĝ , followed by three additions of a scalar times a polynomial, and
a few more scalar products and additions. Since we can multiply a polynomial by a scalar
and add to a pre-initialized result without using any extra space, this still achieves the same
asymptotic time and space complexity as before, albeit with a few extra arithmetic operations.

In fact, our implementation in the MVP library uses only n/2+O(1) more operations at
each recursive step than the power-of-two algorithm analysed earlier, by making careful use
of additional versions of these routines when the size of the operands differ by exactly one.
These “one-different” versions have the same structure and asymptotic cost as the routines
already discussed, so we will not give further details here.

If the degrees of f and g differ by more than one, we use the well-known trick of blocking
the larger polynomial into sub-arrays whose length equal the degree of the smaller one. That
is, given f , g ∈ R[x ] with n = deg f , m = deg g and n >m , we write n = qm + r and reduce
the problem to computing q products of a degree-m by a degree-(m −1) polynomial and one
product of a degree-m by a degree-(r −1) polynomial. The m by m −1 products are handled
with the “one-different” versions of the algorithms mentioned above.

Each of the q initial products overlap in exactly m coefficients (half the size of the output),
so Condition 4.1 actually works quite naturally here, and the q m -by-(m−1) products are calls
to a version of SE_KarMult_1. The single m -by-(r − 1) product is performed first (so that
the entire output is uninitialized), and this is done by a recursive call to this same procedure
multiplying arbitrary unequal-length polynomials.
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All these special cases give the following result, which is the first algorithm for dense uni-
variate multiplication to achieve sub-quadratic time times space.

Theorem 4.4. For any f , g ∈ R[x ] with degrees less than n, the product f · g can be computed
using O(n log2 3) ring operations, O(1) temporary storage of ring elements, and O(log n ) tempo-
rary storage of word-sized integers.

4.2.4 Rolling a log from space to time

In fact, the O(log n ) temporary storage of integers can be avoided entirely, at the cost of an
extra logarithmic factor in the time cost. The idea is to store the current position of the execu-
tion in the recursion tree, by a list of integers (r0, r1, . . .). Each ri is 0, 1, or 2, indicating which
of the three recursive calls to the algorithm has been taken on level i of the recursion. Since
the recursion depth is at most log2 n , this list can be encoded into a single integer R with at
most (log2 3) log2 n bits. This is bounded by O(log n ) bits, and therefore the IMM algorithm
can choose the word size w appropriately to store R in a single word. Each time the i th re-
cursive call is made, R is updated to 3R + i , and each time a call returns, R is reset to bR/3c.
With the position in the recursion tree thus stored in a single machine word, each recursive
call overwrites the pointers from the parent call, using only O(1) temporary space throughout
the computation.

But when each recursive call returns, the algorithm will not know what parts of memory to
operate on, since the parent call’s pointers have been overwritten! This is solved by using the
encoded list of ri ’s, simulating the same series of calls from the top level to recover the pointers
used by the parent call. Such a simulation can always be performed, even though the values
in the memory locations are different than at the start of the algorithm, since the algorithm
is “oblivious”. That is, its recursive structure does not depend on the values in memory, but
only on their size. The cost of this simulation is O(log n ) at each stage, increasing the time
complexity to O(n log2 3 log n ). Somewhat dishonestly, we point out that this is still actually
O(n 1.59), since 1.59 is strictly greater than log2 3.

4.3 Space-efficient FFT-based multiplication

We now show how to perform FFT-based multiplication in O(n log n ) time and using only O(1)
temporary space, when the coefficient ring R already contains the necessary primitive root of
unity. A crucial subroutine will be our in-place truncated Fourier transform algorithm from
Chapter 3.

Recall the notation for PRUs introduced in subsection 3.1.6 of the previous chapter: ω[k ] is
a 2k -PRU in R for any k small enough that R actually contains such a PRU, andωi is defined
asωrevk i

[k ] .

For polynomials f , g ∈ R[x ], write n = deg f +deg g − 1 for the number of coefficients in
their product. The multiplication problem we consider is as follows. Given f , g , and a 2k -
PRU ω[k ], with k ≥ log2 n , compute the coefficients of the product h = f · g . As usual, the
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coefficients of f and g are stored in read-only input space along with the PRU ω[k ], and the
coefficients of h must be written to the size-n output space.

A straightforward implementation of the standard FFT-based multiplication algorithm
outlined at the start of this chapter would require O(n ) temporary memory to compute this
product. Our approach avoids the need for this temporary memory by computing entirely in
the output space. In summary, we first compute at least one-third of DFT( f · g ), then at least
one-third of what remains, and so forth until the operation is complete. A single in-place
inverse TFT then completes the algorithm.

4.3.1 Folded polynomials

The initial stages of the algorithm compute partial DFTs of each of f and g , then multiply
them to obtain a partial DFT of h. A naïve approach to computing these partial transforms
would be to compute the entire DFT and then discard the unneeded parts, but this would
violate both the time and space requirements of our algorithm.

Instead, we define the folded polynomials as smaller polynomials determined from each of
f , g , h whose ordinary, full-length DFTs correspond to contiguous subsequences of the DFTs
of f , g , h.

Definition 4.5. For any u ∈ R[x ], and any i , j ∈ N, the folded polynomial u a ,b ∈ R[x ] is the
polynomial with degree less than 2b given by

u a ,b (x ) = u (ωa ·x )remx 2b −1.

To see how to compute the folded polynomials, first write u =
∑

i≥0 c i x i . Then

u a ,b = u (ωa x )remx 2b −1=
∑

i≥0

c iω
i
a x i rem 2b

.

Using this formulation, we can compute u a ,b using O(deg u ) ring operations, and using
only the storage space for the result, plus a single temporary ring element, an accumulator
for the powers ofωa .

The usefulness of the folded polynomials is illustrated in the following lemma, which
shows the relationship between DFT(u ) and DFT(u a ,b ).

Lemma 4.6. For any u ∈R[x ] and a ,b ∈N such that 2b |a , the elements of the discrete Fourier
transform of u a ,b atω[b ] are exactly

DFTω[b ](u a ,b ) = u (ωa ), u (ωa+1), . . . , u (ωa+2b−1).

Proof. Let s ∈ {0, 1, . . . , 2b − 1}. Thenωs can be written asωrevb s
[b ] , from the definitions. There-

fore, we see thatωs is a 2b -PRU, and furthermore,ω2b

s −1= 0 inR. This implies that u a ,b (ωs ) =
u (ωaωs ).
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Now since 2b | a , a and s have no bits in common, so for any k > log2 a , we have that
revk (a + s ) = revk a + revk s , and therefore, from the definitions,

ωaωs =ω
revk a+revk s
[k ] =ωa+s .

Putting this together, we see that

DFTω[b ](u a ,b ) = u a ,b (ω0), u a ,b (ω1), . . . , u a ,b (ω2b−1)

= u (ωa ), u (ωa+1), . . . , u (ωa+2b−1).

4.3.2 Constant-space algorithm

Our strategy for FFT-based multiplication with O(1) extra space is then to compute

DFTω[bi ]
(ha i ,b i )

for a sequence of indices a i and b i satisfying a 0 = 0 and a i = a i−1 + 2b i−1 for i ≥ 1. From
Lemma 4.6 above, this sequence will give the DFT of h itself after enough iterations. The b i ’s
at each step will be chosen so that the computation of that step can be performed entirely in
the output space.

This approach is presented in Algorithm 4.2. The input consists of two arrays A, B ∈ R∗,
where A[i ] is the coefficient of x i in f and B [i ] is the coefficient of x i in g . The algorithm
uses the output space of size deg f + deg g + 1 and ultimately writes the coefficients of the
product h = f g in that space. The subroutine FFT indicates the usual radix-2 in-place FFT
algorithm on a power-of-two input size, and the subroutine InplaceITFT is Algorithm 3.2
from the previous chapter.

Theorem 4.7. Algorithm 4.2 correctly computes the product h = f · g , using O(n log n ) ring
operations and O(1) temporary storage of ring elements and word-sized integers.

Proof. The main loop terminates since q is strictly increasing. Let m be the number of iter-
ations, and let q0 > q1 > · · · > qm−1 and L 0 ≥ L 1 ≥ · · · ≥ L m−1 be the values of q and L on each
iteration. By construction, the intervals [qi ,qi + L i ) form a partition of [0, r − 1), and L i is the
largest power of two such that qi +2L i ≤ r . Therefore each L can appear at most twice (i.e., if
L i = L i−1 then L i+1 < L i ) Furthermore, m ≤ 2 lg r , and we have L i |qi for each i .

At each iteration, lines 7–8 compute the coefficients of the folded polynomial f q ,`, placing
the result in MO[q , . . . ,q + L − 1]. From Lemma 4.6, we know that the FFT on Line 9 then
computes MO[q + i ] = f (ωq+i ) for 0≤ i < L. The next two lines similarly compute MO[q +L+
i ] = g (ωq+i ) for 0 ≤ i < L. (The condition q + 2L ≤ r ensures that both of these transforms
fit into the output space.) Lines 13–14 then compute MO[q + i ] = f (ωq+i ) · g (ωq+i ) = h(ωq+i )
for 0 ≤ i < L. These are the corresponding elements of the discrete Fourier transform of h,
written in reverted binary order.

After line 16 we finally have MO[i ] = h(ωi ) for all 0≤ i < n . Observe that the last element
is handled specially since the output space does not have room for both evaluations. The call
to Algorithm 3.2 on Line 17 then recovers the coefficients of h, in the normal order.
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Algorithm 4.2: Space-efficient FFT-based multiplication

Input: f , g ∈R[x ], stored in arrays A and B , respectively
Output: The coefficients of h = f · g , stored in output space MO

1 n← deg f +deg g −1
2 q ← 0
3 while q < n −1 do
4 `←blg(n −q )c−1
5 L← 2`

6 MO[q ,q +1, . . . ,q +2L−1]← (0, 0, . . . , 0)
7 for 0≤ i ≤ deg f do
8 MO[q +(i rem L)]←MO[q +(i rem L)]+ωi

q A[i ]

9 FFT(MO[q ,q +1, . . . ,q + L−1])
10 for 0≤ i ≤ deg g do
11 MO[q + L+(i rem L)]←MO[q + L+(i rem L)]+ωi

q B [i ]

12 FFT(MO[q + L,q + L+1, . . . ,q +2L−1])
13 for 0≤ i < L do
14 MO[q + i ]←MO[q + i ] ·MO[q + L+ i ]

15 q ←q + L

16 MO[n −1]← f (ωn−1) · g (ωn−1)
17 InplaceITFT(MO[0, 1, . . . , n −1])
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We now analyse the time and space complexity. Computing the folded polynomials in the
loops on lines 6, 7, 10 and 13 takes O(n ) operations per iteration, or O(n log n ) in total, since
m =O(log n ). The FFT calls contribute O(L i log L i ) per iteration, for a total of

O(
∑

i

L i log L i ) =O(
∑

i

L i log L) =O(n log n ).

Line 16 requires O(n ) ring operations, and line 17 requires O(n log n ). The space requirements
follow directly from the fact that the FFT and InplaceTFT calls are all performed in-place.

4.4 Implementation

These algorithms have been implemented in the MVP library for dense polynomial multipli-
cation over prime fields Fp [x ] with p a single machine word-sized prime. For the FFT-based
multiplication method, we further require that Fp contains 2k -PRU of sufficiently high order,
as mentioned above.

For benchmarking, we compared our algorithms with the C++ library NTL (Shoup, 2009).
This is a useful comparison, as NTL also relies on a blend of classical, Karatsuba, and FFT-
based algorithms for different ranges of input sizes, using the standard Karatsuba and FFT
algorithms we presented earlier. There are some faster implementations of modular multipli-
cation, most notably zn_poly (Harvey, 2008), but these use somewhat different algorithms
and methods. We also used the Mod<long> class in MVP for the coefficient arithmetic, as
opposed to the (faster) Montgomery representation mentioned earlier, because this is essen-
tially the same as NTL’s implementation for coefficient arithmetic. Our aim is not to claim
the “fastest” implementation but merely to demonstrate that the space-efficient algorithms
presented can compete in time cost with other methods that use more space. By comparing
against a similar library with similar coefficient arithmetic, we hope to gain insight about the
algorithms themselves.

Table 4.2 shows the results of some early benchmarking tests. For all cases, we multiplied
two randomly-chosen dense polynomials of the given degree, and the time per iteration, in
CPU seconds, is reported. NTL uses classical multiplication for degree less than 16 (and as
a base case for Karatsuba), Karatsuba’s algorithm for size up to 512, and FFT-based multipli-
cation for the largest sizes. Our crossover points, determined experimentally on the target
machine, are a little higher: 32 and 768 respectively. This is probably due to the slightly higher
complication of our new algorithms, but there could also be other factors at play.

We should also point out that we used the radix-2 not-in-place inverse FFT for the final
step of Algorithm 4.2, rather than the in-place truncated Fourier transform of the previous
chapter. This choice was made because of the especially bad performance of the in-place in-
verse TFT in our experiments before. Observe that when the size of the product is a power
of two, our algorithm is actually in-place, and even this is better than previously-known ap-
proaches in terms of space efficiency.
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Size NTL Low-space in MVP Ratio
100 4.00×10−5 3.00×10−5 .750
150 7.94×10−5 6.24×10−5 .786
200 1.26×10−4 8.70×10−5 .690
250 1.70×10−4 1.17×10−4 .688
300 2.35×10−4 1.88×10−4 .800
350 2.97×10−4 2.24×10−4 .754
400 3.61×10−4 2.60×10−4 .720
450 4.34×10−4 3.10×10−4 .714
500 5.02×10−4 3.50×10−4 .697
600 7.04×10−4 5.68×10−4 .807
700 8.32×10−4 6.96×10−4 .837
800 8.42×10−4 7.78×10−4 .924
900 8.48×10−4 8.24×10−4 .972

1000 8.74×10−4 8.34×10−4 .954
1200 1.70×10−3 1.54×10−3 .906
1400 1.77×10−3 1.59×10−3 .898
1600 1.80×10−3 1.70×10−3 .944
1800 1.90×10−3 1.76×10−3 .926
2000 1.95×10−3 1.88×10−3 .964
3000 4.07×10−3 3.58×10−3 .879
4000 4.22×10−3 4.04×10−3 .957
5000 1.05×10−2 7.38×10−3 .703
6000 1.06×10−2 8.00×10−3 .755
7000 1.09×10−2 8.44×10−3 .774
8000 1.10×10−2 8.80×10−3 .800
9000 2.28×10−2 1.59×10−2 .697

Table 4.2: Benchmarks versus NTL
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4.5 Conclusions

The two algorithms presented in this chapter match existing “fast” algorithms in asymptotic
time complexity, but need considerably less auxiliary storage space to compute the result.
Our algorithms are novel theoretically as the first methods to achieve less than quadratic time
× space for multiplication. This is achieved in part by working in the more permissive (and
realistic) IMM model.

Much work remains to be done on this topic. The most obvious question is how these al-
gorithms can be adapted to multi-precision integer multiplication. The FFT-based algorithm
can already be used directly as a subroutine, since integer multiplication algorithms that rely
on the FFT generally work over modular rings that contain the required PRUs. A straight-
forward adaptation of the space-efficient Karatsuba multiplication to the multiplication of
multi-precision integers is not difficult to imagine, but the extra challenges introduced by the
presence of carries, combined with the extreme efficiency of existing libraries such as GMP
(Granlund et al., 2010), mean that an even more careful implementation would be needed to
gain an advantage in this case. For instance, it would probably be better to use a subtractive
version of Karatsuba’s algorithm to avoid some carries. This is also likely the area of greatest
potential utility of our new algorithms, as routines for long integer multiplication are used in
many different areas of computing.

There are also some more theoretical questions left open here. One direction for further
research would be to see if a scheme similar to the one presented here for Karatsuba-like
multiplication with low space requirements could also be adapted to the Toom-Cook 3-way
divide-and-conquer method, or even their arbitrary k -way scheme (Toom, 1963; Cook, 1966).
Some of these algorithms are actually used in practice for a range of input sizes between Karat-
suba and FFT-based methods, so there is a potential practical application here. Another task
for future research would be to improve the Karatsuba-like algorithm even further, either by
reducing the amount of extra storage below O(log n ) or (more usefully) reducing the implied
constant in the O(n 1.59) time complexity.

Finally, a natural question is to ask whether polynomial or long integer multiplication can
be done completely in-place. We observe that the size of the input (counting the coefficients
of both multiplicands) is roughly the same as the size of the output, so asking for an in-place
transformation overwriting the input with the output seems plausible. Upon further reflec-
tion, it seems that the data dependencies will make this task impossible, but we have no proof
of this at the moment.
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