
The great generality and simplicity of its rules makes arithmetic
accessible to the dullest mind.

—Tobias Dantzig, Numbers (1930)

Chapter 3

In-place Truncated Fourier Transform

The fast Fourier transform (FFT) algorithm is a crucial operation in many areas of signal
processing as well as computer science. Most relevant to our focus, all the asymptotically
fastest methods for polynomial and long integer multiplication rely heavily on the FFT as a
subroutine. Most commonly, particularly for multiplication algorithms, the radix-2 Cooley-
Tukey FFT is used. In the typical case that the transform size is not exactly a power of two, the
so-called truncated Fourier transform (TFT) can be used to avoid wasted computation. How-
ever, in using the TFT, a crucial property of the FFT is lost: namely, that it can be computed
completely in-place, with the output overwriting the input. Here we present a new algorithm
for the truncated Fourier transform which regains this property of the FFT and can be com-
puted completely in-place and with the same asymptotic time cost as the original method.

The main results in this chapter represent joint work with David Harvey of New York Uni-
versity. We presented some of these results at ISSAC 2010 (Harvey and Roche, 2010). We also
thank the helpful reviewer at that conference who pointed out the Devil’s convolution algo-
rithm of Crandall (1996).

3.1 Background

3.1.1 Primitive roots of unity and the discrete Fourier transform

Recall that an nth root of unity ω ∈ R is any element such that ωn = 1; furthermore, ω is
said to be an nth primitive root of unity, or n-PRU, if n is the least integer such that ωn = 1.
The only roots of unity in the real numbers R are −1 and 1, whereas the complex numbers C
contain an n-PRU for any n , for instance, e2πi/n . Finite fields are more interesting: the finite
field with q elements Fq contains an n-PRU if and only if n | (q − 1). If we have a generator α
for the multiplicative group of the field, the ring element α(q−1)/n gives one n-PRU.

The cyclic nature of PRUs is what makes them useful for computation. Mathematically, a
n-PRUω ∈R generates an order-n subgroup of R∗. In particular,ωk =ωk rem n for any integer
exponent k .

35

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

The discrete Fourier transform (DFT) is a linear map that evaluates a given polynomial
at powers of a root of unity. Given a polynomial f ∈ R[x] and an n-PRU ω ∈ R, the discrete
Fourier transform of f atω, written DFTω(f), is defined as

DFTω(f) =
�

f
�

ωi
��

0≤i<n
.

That is, the DFT at ω of f is the polynomial f evaluated at every power of ω. By writing the
polynomial f = a 0+a 1x +a 2x 2+ · · · in the dense representation as a list (a 0, a 1, a 2, . . .)∈R∗ of
its coefficients, the function DFTω is a map from R∗ to Rn .

If we restrict to polynomials f with degree strictly less than n , then such polynomials can
always be stored as an array of exactly n coefficients, and DFTω is a map from Rn to Rn . In
these cases the DFTω map is also invertible, from the uniqueness of polynomial interpolation,
using the fact that the valuesωi for 0≤ i < n are all distinct.

In fact, the inverse DFT is simply a DFT atω−1, scaled by n . To be precise,

DFTω−1 (DFTω (a 0, a 1, . . . , a n−1)) = (na 0, na 1, . . . , na n−1) .

This tight relationship between the forward and inverse DFT is crucial, especially for the
application to multiplication.

3.1.2 Fast Fourier transform

Naïvely, evaluating DFTω(f) requires evaluating f at n distinct points, for a total cost of O(n 2)
ring operations. The fast Fourier transform (FFT) is a much more efficient algorithm to com-
pute DFTω(f); for certain values of n , it improves the cost to O(n log n).

The FFT algorithm has been hugely useful in computer science, and in particular in the
area of signal processing. For instance, it was named one of the top ten algorithms of the
twentieth century (Dongarra and Sullivan, 2000), where the authors cite it as “the most ubiq-
uitous algorithm in use today to analyze and manipulate digital or discrete data”. The FFT has
an interesting history: it was known to Gauss, but was later rediscovered in various forms by
a number of authors in the twentieth century (Heideman, Johnson, and Burrus, 1984). The
most famous and significant rediscovery was by Cooley and Tukey (1965), who were also the
first to describe how to implement the algorithm in a digital computer.

We now briefly describe Cooley and Tukey’s algorithm. If n can be factored as n = `m ,
then the FFT is a divide-and-conquer strategy that computes a size-n DFT by m size-` DFTs,
followed by ` size-m DFTs. Given f = a 0 + a 1x + · · ·+ a n−1x n−1, we define the polynomials
g i ∈R[x], for 0≤ i <m , by

g i =
∑

0≤j<`

a i+m j x j = a i +a i+m x +a i+2m x 2+ · · ·+a i+(`−1)m x `−1.

Observe that every coefficient in f appears in exactly one g i , and each deg g j < `. In fact, we
can write f as

f =
∑

0≤i<m

x i g i (x m) = g 0(x m)+x g 1(x m)+ · · ·x m−1 g m−1(x m).

36

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

Now let i , j ∈ N such that 0 ≤ i < ` and 0 ≤ j <m , and consider the (i + `j)th element of
DFTω(f), which is f (ωi+`j). From above, we have

f
�

ωi+`j
�

=
∑

0≤k<m

ω(i+`j)k g k

�

ω(i+`j)m
�

=
∑

0≤k<m

�

ω`
�j k
ωi k g k

�

(ωm)i
�

, (3.1)

with the second equality following from the fact that `m = n and ωn = 1. Now observe that
ωm is an `-PRU in R, so each g k (ωi m) is simply the i th element of DFTωm (g k). Once these
DFTs are known, for each i ∈ {0, 1, . . . ,`−1}, we can compute the polynomials

h i =
∑

0≤k<m

ωi k g k

�

(ωm)i
�

x k .

Each h i has degree less than m , and the coefficients of each h i are computed by multiplying
a power of ω with an element of DFTωm (g k) for some k . (The powers of ω multiplied here,
which have the formωi k , are called “twiddle factors”.)

From (3.1), we can then write f (ωi+`j) = h i ((ω`)j). Sinceω` is an m -PRU, these values are
determined by a size-m DFT of h i . Specifically, (i + `j)th element of DFTω(f) is equal to the
j th element of DFTω`(h i).

This completes the description of the FFT algorithm. In summary, we first write down
the g i s (which requires no computation) and compute m size-`DFTs, DFTωm (g i). These val-
ues are then multiplied by the twiddle factors to compute the coefficients of every h i . This
step only uses O(n) ring operations, since we can first compute all powers ofω and then per-
form all the multiplications with elements of DFTωm (g i). Finally, we compute ` size-m DFTs,
DFTω`(h i), which give the elements in DFTω(f).

3.1.3 FFT variants

The radix-2 Cooley-Tukey FFT algorithm, which we will examine closely in this chapter, works
when the size n of the DFT to be computed is a power of 2. This allows the FFT algorithm
to be applied recursively. When ` = n/2 and m = 2, the resulting algorithm is called the
decimation-in-time variant. Since ` is also a power of 2, the 2 initial size-` DFTs (on the g i s)
can be computed with recursive calls. The base case is when the size n = 2, in which case the
operation is computed directly with constant cost. This recursive algorithm has a total cost of
O(n log n) ring operations.

The so-called decimation-in-frequency variant of the radix-2 FFT is just the opposite, set-
ting `= 2 and m = n/2. (Both of these terms come from the application of FFT to signal pro-
cessing.) Halfway between these two versions would be choosing ` to be the greatest power
of two less than

p
n , and m the least power of two greater than

p
n . This type of FFT was care-

fully studied by Bailey (1990) and Harvey (2009) and shown to improve the I/O complexity of
FFT computation. However, all these variants still have time cost O(n log n).

The idea of the radix-2 FFT can of course be generalised to radix-3 FFT or, more generally,
radix-k FFT for any k ≥ 2. This will require that the input size n is a power of k , and the cost

37

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

a b

a +ωi b a −ωi b

i

Figure 3.1: Butterfly circuit for decimation-in-time FFT

of the radix-k algorithm will be O(k n logk n) — the same cost as the radix-2 version if k is
constant.

Even more generally, any factorization of n can be used to generate an FFT algorithm. This
is the idea of the mixed-radix FFT algorithm, whose cost depends on the largest factor of n
used in the algorithm, but is at least O(n log n).

Though these methods are quite popular in signal processing algorithms, the radix-2 ver-
sion (and sometimes radix 3) are used almost exclusively in symbolic computation. This is
partly due to the fact that, at least for the application to integer multiplication, FFTs are most
conveniently and commonly performed over fixed, chosen finite fields. Finding a prime p
such that p−1 is divisible by a sufficiently high power of 2 is not difficult, and this then allows
a radix-2 FFT of any smaller size to be performed in the field Fp of integers modulo p . This is a
fundamentally different situation than working over the complex numbers, where no special
construction or pre-computation is needed to find PRUs.

3.1.4 Computing the FFT in place

An important property of the FFT algorithm is that it can be computed in-place. Recall in the
IMM model that this means the input space is empty, and the output space is initialised with
the data to be transformed. An in-place algorithm is one which uses only a constant amount
of temporary storage to solve this sort of problem. Any formulation of the Cooley-Tukey FFT
algorithm described above can be computed in-place, as long as the base case of the recursion
has constant size. In particular, the radix-2 and radix-3 versions can be computed in-place.

Consider the radix-2 decimation-in-time FFT. Since the algorithm is recursive and the
base case has size 2, the entire circuit for this computation is composed of smaller circuits
for size-2 DFTs, with varying twiddle factors (powers ofω). Such a circuit is called a “butterfly
circuit”, and is shown in Figure 3.1. The circuit shown takes ring elements a ,b as input and
computes a +ωi b and a −ωi b , whereωi is the twiddle factor for this butterfly.

Figure 3.2 shows a circuit for the entire computation of a size-16 FFT (radix-2, decimation-
in-time variant), with input polynomial f = a 0+a 1x + . . .+a 15x 15. Though not shown, each
of the butterflies making up this circuit has an associated twiddle factor as well. Because the
size-2 butterfly can clearly be computed using at most one extra unit of storage, the entire
computation can be as well. At each of the log2 n steps through the algorithm, the elements

38

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

a0 a1 a2 a3 a15· · · · · · · · ·

f(ω0)f(ω8)f(ω4)f(ω12) f(ω15)· · · · · · · · ·

Figure 3.2: Circuit for radix-2 decimation-in-time FFT of size 16

stored in the size-n output space correspond to the nodes at one level of the circuit. Each step
uses O(n) time and O(1) space to overwrite this array with the nodes at the next level of the
circuit, until we reach the bottom and are done.

The only complication with this in-place computation is that the order of the elements
is perturbed. In particular, if the i th position in the array holds the a i at the beginning of
the computation, the computed value in that position at the end of the algorithm will not
be f (ωi) but rather f (ωrevk i). Here k = log2 n and revk i is the k -bit reversal of the binary
representation of i . For instance, rev5(11) = 26, since 11 is written 01011 in base 2 and 26 is
11010. This permutation can easily be inverted in in-place to give the output in the correct
order. However, for our application, this will actually not be necessary.

3.1.5 The truncated Fourier transform

As mentioned above, symbolic computation algorithms typically use radix-2 FFTs. However,
the size of the input, for instance in the application to polynomial multiplication, will rarely
be exactly a power of two. In this case, the traditional approach has been to pad the input
with zeros so that the size is a power of two. However, this wastes not only memory space but
also time in performing unnecessary computations.

Numerous approaches have been developed to address this problem and adapt radix-2
FFTs to arbitrary sized inputs and outputs. The “devil’s convolution” algorithm of Crandall
(1996) tackles this issue in the higher-level context of multiplication by breaking the problem
into a large power-of-two size, solved with radix-2 FFTs, and a smaller arbitrary size, solved
recursively. However, there are still significant jumps in the time and space cost (though not
exactly at powers of two).

39

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

a0 a1 a2 a3 a10· · ·

f(ω0)f(ω8)f(ω4)f(ω12) f(ω5)· · ·

Figure 3.3: Circuit for forward TFT of size 11

At the lower-level context of DFTs, it has been known for some time that if only a subset
of the output is needed, then the FFT can be truncated or “pruned” to reduce the complexity,
essentially by disregarding those parts of the computation tree not contributing to the desired
outputs (Markel, 1971; Sorensen and Burrus, 1993). More recently, van der Hoeven took the
crucial step of showing how to invert this process by assuming a subset of input/output co-
efficients are zero, describing a truncated Fourier transform (TFT) and an inverse truncated
Fourier transform (ITFT), and showing that this leads to a polynomial multiplication algo-
rithm whose running time varies relatively smoothly in the input size (van der Hoeven, 2004,
2005).

Specifically, given an input vector of length n ≤ 2k , the TFT computes the first n coeffi-
cients of the ordinary Fourier transform of length 2k , and the ITFT computes the inverse of
this map. The running time of these algorithms smoothly interpolates the O(n log n) complex-
ity of the standard radix-2 Cooley–Tukey FFT algorithm. One can therefore deduce an asymp-
totically fast polynomial multiplication algorithm that avoids the characteristic “jumps” in
running time exhibited by traditional FFT-based polynomial multiplication algorithms when
the output degree crosses a power-of-two boundary. This observation has been confirmed
with practical implementations (van der Hoeven, 2005; Li, Maza, and Schost, 2009; Harvey,
2009), with the most marked improvements in the multivariate case.

The structure of the TFT is shown in Figure 3.3, for an input of size 11. The structure is
essentially the same as the size-16 decimation-in-time FFT, except that unnecessary compu-
tations — either those coming from inputs known to be zero, or those going to outputs that
are not needed — are “pruned” away. Observe that, unlike with the FFT, inverting the TFT
is completely non-trivial, and requires a more complicated algorithm, as shown by van der
Hoeven (2004). We will not discuss the details of the inverse TFT algorithm presented there,
but observe that it has roughly the same time cost as the forward TFT.

40

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

One drawback of van der Hoeven’s algorithms is that while their time complexity varies
smoothly with n , their space complexity does not. We can observe from the circuit for the
size-11 TFT that 16 ring elements must be stored on the second step. In general, both the
TFT and ITFT require 2dlog2 ne −n units of extra storage space, which in the worst case is Ω(n).
Therefore the TFT and ITFT are not in-place algorithms.

3.1.6 DFT notation

For the discussion of our new algorithms below, it will be convenient to have a simpler nota-
tion for power-of-two roots of unity and bit reversals. First, denote by ω[k] a primitive 2k -th
root unity, for some integer k . Our algorithm will require that such a root of unity exists for all
k ≤ �log2 n

�

.

We assume that these PRUs are chosen compatibly, so that ω2
[k+1] = ω[k] for all k ≥ 0.

Define a sequence of roots ω0,ω1, . . . by ωs =ω
revk s
[k] , where k ≥ dlg(s + 1)e and revk s denotes

the length-k bit-reversal of s . This definition is consistent because the PRUs were chosen
compatibly. This is because, for any i ∈N, revk+i s = 2i · revk s , and therefore

ω
revk+i s
[k+i] =ω

2i revk s
[k+i] =ω

revk s
[k] .

Thus we have

ω0 =ω[0] (= 1) ω2 =ω[2] ω4 =ω[3] ω6 =ω3
[3]

ω1 =ω[1] (=−1) ω3 =ω3
[2] ω5 =ω5

[3] ω7 =ω7
[3]

and so on. Note that

ω2s+1 =−ω2s and ω2
2s =ω

2
2s+1 =ωs .

Let f ∈ R[x] be a polynomial with deg f < n as before. The notation just introduced has
the convenient property that the i th element of DFTω(f), for any power-of-two PRUω, when
written in the bit-reversed order as computed by the in-place FFT, is simply f (ωi). If we again
write a i for the coefficient of x i in f , then we will also write â i = f (ωi) for the i th term in the
DFT of f .

Algorithms 3.1 and 3.2 below follow the outline of the decimation-in-time FFT, and de-
compose f as

f (x) = g (x 2)+x ·h(x 2),

where deg g < dn/2e and deg h < bn/2c. Write b0,b1, . . . ,b dn/2e−1 for the coefficients of g and
c0, c1, . . . , c bn/2c for the coefficients of h. Using the notation just introduced, the “butterfly rela-
tions” corresponding to the bottom level of the FFT circuit can be written

â 2s = b̂s +ω2s ĉs ,

â 2s+1 = b̂s −ω2s ĉs .
(3.2)

41

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

3.2 Computing powers ofω

Both the TFT and ITFT algorithm require, at each recursive level, iterating through a set of
index-root pairs such as {(i ,ωi), 0≤ i < n}. A traditional, time-efficient approach would be to
pre-compute all powers of ω[k], store them in reverted-binary order, and then pass through
this array with a single pointer. However, this is impossible under the restriction that no aux-
iliary storage space be used.

One solution, if using the ordinary FFT, is to use a decimation-in-frequency algorithm
rather than decimation-in-time. In this version, at the k th level, the twiddle factors are ac-
cessed in normal order ω0

[k],ω
1
[k], Hence this approach can be used to implement the

radix-2 FFT algorithm in-place.

However, our algorithm critically requires the decimation-in-time formulation, and thus
accessing the twiddle factors in reverted binary order ω0,ω1,ω2, To avoid this, we will
compute the roots on-the-fly by iterating through the powers ofω[k] in order, and through the
indices i in bit-reversed order. That is, we will access the array elements in reverted binary
order, but the powers ofω in the normal order.

Accessing array elements in reverted binary order simply requires incrementing an integer
counter through revk 0, revk 1, revk 2, Of course such increments will no longer be single
word operations, but fortunately the reverted binary increment operation can be performed
in-place and in amortized constant time. The algorithm is simply the same as the usual bit-
wise binary increment operation, but performed in reverse.

3.3 Space-restricted TFT

In this section we describe an in-place TFT algorithm that uses only O(1) temporary space (Al-
gorithm 3.1). First we define the problem formally for the algebraic IMM model. There is no
input or output in integers, so we denote an instance by the triple (I ,O,O ′) ∈ (R∗)3 containing
ring elements on the algebraic side. This is an in-output problem, so every valid instance has
I empty, O = (a 0, a 1, . . . , a n−1), and O ′ = (â 0, â 1, . . . , â n−1), representing the computation of a
size-n DFT of the polynomial f ∈R[x]with coefficients a 0, . . . , a n−1. To be completely precise,
we should also specify that O contains a 2dlog2 ne-PRUω[dlog2 ne].

For the algorithm, we will use MO[i] to denote the i th element of the (algebraic) output
space, at any point in the computation. The in-place algorithm we will present will use a
constant number of extra memory locations M T [i], but we will not explicitly refer to them in
this way.

The pattern of the algorithm is recursive, but we avoid recursion by explicitly moving
through the recursion tree, avoiding unnecessary space usage. An example tree for n = 6
is shown in Figure 3.4. The node S = (q , r) represents a sub-array of the output space with
offset q and stride 2r ; the i th element in this sub-array is Si =MO[q + i ·2r], and the length of
the sub-array is given by

len(S) =
¡n −q

2r

¤

.

42

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

(0, 0) = {0, 1, 2, 3, 4, 5}

(0, 1) = {0, 2, 4} (1, 1) = {1, 3, 5}

(0, 2) = {0, 4}

(2, 2) = {2}

(1, 2) = {1, 5}

(3, 2) = {3}

(0, 3) = {0} (4, 3) = {4} (1, 3) = {1} (5, 3) = {5}

Figure 3.4: Recursion tree for in-place TFT of size n = 6

The root is (0, 0), corresponding to the entire input array of length n . Each sub-array of
length 1 corresponds to a leaf node, and we define the predicate IsLeaf(S) to be true if and
only if len(S) = 1. Each non-leaf node splits into even and odd child nodes.

To facilitate the path through the tree, we define a few functions on the nodes. First, for
any non-leaf node (q , r), define

EvenChild(q , r) = (q , r +1),

OddChild(q , r) = (q +2r , r +1).

If (q , r) is not the root node, define

Parent(q , r) =

(

(q , r −1), if q < 2r−1,

(q −2r−1, r −1), if q ≥ 2r−1.

Finally, for any node S we define

LeftmostLeaf(S) =

(

S, if IsLeaf(S),

LeftmostLeaf(EvenChild(S)), otherwise.

So for example, in the recursion tree shown in Figure 3.4, let the node S = (1, 1). Then
OddChild(S) = (3, 2), the right child in the tree, Parent(S) = (0, 0), and LeftmostLeaf(S) = (1, 3).
We also see that len(S) = 3 and Si =MO[1+2i].

Algorithm 3.1 gives the details of our in-place algorithm to compute the TFT, using these
functions to move around in the recursion tree.

The structure of the algorithm on our running example of size 11 is shown in the circuit
in Figure 3.5. The unfilled nodes in the diagram represent temporary elements that are com-
puted on-the-fly and immediately discarded in the algorithm, and the dashed edges indicate
the extra computations necessary for these temporary computations. Observe that the struc-
ture of the circuit is more tangled than before, and in particular it is not possible to perform
the computation level-by-level as one can for the normal FFT and forward TFT.

We begin with the following lemma.

43

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

Algorithm 3.1: In-place truncated Fourier transform

Input: Coefficients a 0, a 1, . . . , a n−1 ∈R and PRUω∈R, stored in-order in the output
space MO

Output: â 0, â 1, . . . , â n−1, stored in-order in the output space MO

1 S← LeftmostLeaf(0, 0)
2 prev← null
3 while true do
4 m ← len(S)
5 if IsLeaf(S) or prev=OddChild(S) then
6 for (i ,θ)∈ {(j ,ω2j) : 0≤ j < bm/2c} do

7

�

S2i

S2i+1

�

←
�

S2i +θS2i+1

S2i −θS2i+1

�

8 if S = (0, 0) then halt
9 prev←S

10 S← Parent(S)

11 else if prev= EvenChild(S) then
12 if len(S)≡ 1 mod 2 then

13 v ←∑(m−3)/2
i=0 S2i+1 · (ω(m−1)/2)i

14 Sm−1←Sm−1+v ·ωm−1

15 prev←S
16 S← LeftmostLeaf(OddChild(S))

a 0 a 1 a 2 a 3 a 10· · ·

â 0 â 8 â 4 â 12 â 5· · ·

Figure 3.5: Circuit for Algorithm 3.1 with size n = 11

44

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

Lemma 3.1. Let N be a node with len(N) = `, and for 0≤ i < `, define αi to be the value stored
in position Ni before some iteration of line 3 in Algorithm 3.1. If also S = LeftmostLeaf(N) at
this point, then after a finite number of steps, we will have S = N and Ni = α̂i for 0 ≤ i < `,
before the execution of line 8. No other array entries in MO are affected.

Proof. The proof is by induction on `. If ` = 1, then IsLeaf(N) is true and α̂0 = α0 so we are
done. Therefore assume ` > 1 and that the lemma holds for all shorter lengths.

Consider the ring elements αi as coefficients, and decompose the resulting polynomial
into even and odd parts as

α0+α1x +α2x 2+ · · ·+α`−1x `−1 = g (x 2)+x ·h(x 2).

So if we write g =
∑

0≤i<d`/2eb i x i and h =
∑

0≤i<b`/2c c i x i as before, then each b i = α2i and each
c i =α2i+1.

Since S = LeftmostLeaf(N) and N is not a leaf, S = LeftmostLeaf(EvenChild(N)) as well,
and the induction hypothesis guarantees that the even-indexed elements of N , corresponding
to the coefficients of g , will be transformed into

DFT(g) = (b̂0, b̂1, . . . , b̂ d`/2e),

and we will have S = EvenChild(N) before line 8. The following lines set p r e v = EvenChild(N)
and S =N , so that lines 12–16 are executed on the next iteration.

If ` is odd, then (`− 1)/2 ≥ len(OddChild(N)), so ĉ (`−1)/2 will not be computed in the odd
subtree, and we will not be able to apply (3.2) to compute α̂`−1 = b̂ (`−1)/2+ω`−1ĉ (`−1)/2. This is
why, in this case, we explicitly compute

v = h(ω(`−1)/2) = ĉ (`−1)/2

on line 13, and then compute α̂`−1 directly on line 14, before descending into the odd subtree.

Another application of the induction hypothesis guarantees that we will return to line 8
with S = OddChild(N) after computing N2i+1 = ĉ i for 0 ≤ i < b`/2c. The following lines set
p r e v = OddChild(N) and S = N , and we arrive at line 6 on the next iteration. The for loop
thus properly applies the butterfly relations (3.2) to compute α̂i for 0 ≤ i < 2b`/2c, which
completes the proof.

Now we are ready for the main result of this section.

Theorem 3.2. Algorithm 3.1 correctly computes DFT(f). It is an in-place algorithm and uses
O(n log n) algebraic and word operations.

Proof. The correctness follows immediately from Lemma 3.1, since the algorithm begins by
setting S = LeftmostLeaf(0, 0), which is the first leaf of the whole tree. The space bound is
immediate since each variable has constant size.

To verify the time bound, notice that the while loop visits each leaf node once and each
non-leaf node twice (once with prev= EvenChild(S) and once with prev=OddChild(S)). Since
always q < 2r < 2n , there are O(n) iterations through the while loop, each of which has cost
O(len(S)+ log n). This gives the total cost of O(n log n).

45

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

3.4 Space-restricted ITFT

Next we describe an in-place inverse TFT algorithm (Algorithm 3.2). For some unknown poly-
nomial f = a 0+a 1x + · · ·+a n−1x n−1 ∈R[x], the algorithm takes as input â 0, . . . , â n−1 and over-
writes these values with a 0, . . . , a n−1.

The path of the algorithm is exactly the reverse of Algorithm 3.1, and we use the same
notation as before to move through the tree. We only require one additional function:

RightmostParent(S) =

(

S, if S =OddChild(Parent(S)),

RightmostParent(Parent(S)), otherwise.

If LeftmostLeaf(OddChild(N1)) = N2, then Parent(RightmostParent(N2)) = N1. Therefore
RightmostParent computes the inverse of the assignment on line 16 in Algorithm 3.1.

Algorithm 3.2: In-place inverse truncated Fourier transform

Input: Transformed coefficients â 0, â 1, . . . , â n−1 ∈R and PRUω∈R, stored in-order in
the output space MO

Output: The original coefficients a 0, a 1, . . . , a n−1, stored in-order in the output space
MO

1 S← (0, 0)
2 while S 6= LeftmostLeaf(0, 0) do
3 if IsLeaf(S) then
4 S← Parent(RightmostParent(S))
5 m ← len(S)
6 if len(S)≡ 1 mod 2 then

7 v ←∑(m−3)/2
i=0 S2i+1 ·ωi

(m−1)/2

8 Sm−1←Sm−1−v ·ωm−1

9 S← EvenChild(S)

10 else
11 m ← len(S)
12 for (i ,θ)∈ {(j ,ω−1

2j) : 0≤ j < bm/2c} do

13

�

S2i

S2i+1

�

←
�

(S2i +S2i+1)/2
θ · (S2i −S2i+1)/2

�

14 S←OddChild(S)

We leave it to the reader to confirm that the structure of the recursion in Algorithm 3.2
is identical to that of Algorithm 3.1, but in reverse. From this, the following analogues of
Lemma 3.1 and Theorem 3.2 follow immediately:

Lemma 3.3. Let N be a node with len(N) = `, and a 0, a 1, . . . , a n−1 ∈ R be the coefficients of
a polynomial in R[x]. If S = N and Ni = â i for 0 ≤ i < ` before some iteration of line 2 in

46

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

Algorithm 3.2, then after a finite number of steps, we will have S = LeftmostLeaf(N) and Ni = a i

for 0≤ i < ` before some iteration of line 2. No other array entries in MO are affected.

Theorem 3.4. Algorithm 3.2 correctly computes the inverse TFT. It is an in-place algorithm that
uses O(n log n) algebraic and word operations.

The fact that our in-place forward and inverse truncate Fourier transform algorithms are
essentially reverses of each other is an interesting feature not shared by the original formula-
tions in (van der Hoeven, 2004).

3.5 More detailed cost analysis

Our in-place TFT algorithm has the same asymptotic time complexity of previous approaches,
but there will be a slight trade-off of extra computational cost against the savings in space.
That is, our algorithms will perform more ring and integer operations than that of van der
Hoeven (2004). Theorems 3.2 and 3.4 guarantee that this difference will only be a constant
factor. By determining exactly what this constant factor is, we hope to gain insight into the
potential practical utility of our in-place methods.

First we determine an upper bound on the number of multiplications in R performed by
Algorithm 3.1, for an input of length n . In all the FFT variants, multiplications in the underly-
ing ring dominate the cost, since the number of additions in R is at most twice the number of
multiplications (and multiplications are more than twice as costly as additions), and the cost
of integer (pointer) arithmetic is negligible.

Theorem 3.5. Algorithm 3.1 uses at most

5

6
n
�

log2 n
�

+
n −1

3
(3.3)

multiplications in R to compute a size-n TFT.

Proof. When n > 1, the number of multiplications performed depends on whether n is even
or odd. If n is even, then the algorithm consists essentially of two recursive calls of size n/2,
plus the cost at the top level (i.e., the root node in the recursion tree). Since n is even, the only
multiplications performed at the top level are in lines 6–7, exactly n/2 multiplications.

For the second case, if n is odd, the number of multiplications are those used by two re-
cursive calls of size (n + 1)/2 and (n − 1)/2, plus the number of multiplications performed at
the top level. At the top level, there are again bn/2cmultiplications from lines 6–7, but since n
is odd, we must also count the (n +1)/2 multiplications performed on lines 13–14.

This leads to the following recurrence for T (n), the number of multiplications performed
by Algorithm 3.1 to compute a transform of length n :

T (n) =

0, n ≤ 1

2T
�

n
2

�

+ n
2

, n ≥ 2 is even

T
�

n−1
2

�

+T
�

n+1
2

�

+n , n ≥ 3 is odd

(3.4)

47

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

When n is even, we claim an even tighter bound than (3.3):

T (n)≤ (5n/6)
�

log2 n
�−1/3, n even. (3.5)

We now prove both bounds by induction on n .

For the base case, if n = 1, then the bound in (3.3) equals zero, and T (1) = 0 also.

For the inductive case, assume n > 1 and that (3.3) and (3.5) hold for all smaller values. We
have two cases to consider: whether n is even or odd.

When n is even, from (3.4), the total number of multiplications is at most 2T (n/2) +n/2.
From the induction hypothesis, this is bounded above by

2

�

5n

12

¡

log2

n

2

¤

+
n −2

6

�

+
n

2
=

5n

6

�

log2 n
�− 2

3
<

5n

6

�

log2 n
�− 1

3
,

as claimed.

When n is odd, (3.4) tells us that exactly T ((n − 1)/2) + T ((n + 1)/2) + n multiplications
are performed. Now observe that at least one of the recursive-call sizes (n+1)/2 and (n−1)/2
must be even. Employing the induction hypothesis again, the total number of multiplications
for odd n is bounded above by

5(n −1)
12

�

log2

n −1

2

�

− 1

3
+

5(n +1)
12

�

log2

n +1

2

�

+
n −1

6
+n

=
5n

6

��

log2 n
�−1

�

+
7n −3

6

<
5n

6

�

log2 n
�

+
n −1

3
.

Therefore, by induction, the theorem holds for all n ≥ 1.

Next we show that this upper bound is the best possible (up to lower order terms), by
giving an exact analysis of the worst case.

Theorem 3.6. Define the infinite sequence

Nk =
2k − (−1)k

3
, k = 1, 2, 3,

Then for all k ≥ 1, we have

T (Nk) =
5

6
k Nk − 23

18
Nk +

(−1)k

18
k − (−1)k

2
. (3.6)

48

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

Proof. First observe that, since 4i ≡ 1 mod 3 for any i ≥ 0, Nk is always an integer, and further-
more Nk is always odd. Additionally, for k ≥ 3, we have

�

log2 Nk
�

= k −1.

We now prove the theorem by induction on k . The two base cases are when k = 1 and
k = 2, for which T (N1) = T (N2) = T (1) = 0, and the formula is easily verified in these cases.

Now let k ≥ 3 and assume (3.6) holds for all smaller values of k . Because Nk is odd and
greater than 1, from the recurrence in (3.4), we have T (Nk) = T ((Nk −1)/2)+T ((Nk +1)/2)+n .
Rewriting −1 and 1 as (−1)k and −(−1)k (not necessarily respectively), we have

T (Nk) = T

�

2k +2(−1)k

6

�

+T

�

2k −4(−1)k

6

�

+
2k − (−1)k

3

= T

�

2k−1− (−1)k−1

3

�

+T

�

2k−1−2(−1)k−2

3

�

+
2k − (−1)k

3

= T (Nk−1)+2T (Nk−2)+
5 ·2k−2−2(−1)k

3
.

Now observe that k−1 and k−2 are both at least 1, so we can use the induction hypothesis
to write

T (Nk) =
5

6
(k −1)

Nk +(−1)k

2
− 23

18
· Nk +(−1)k

2
− (−1)k

18
(k −1)+

(−1)k

2

+
5

3
(k −2)

Nk − (−1)k

4
− 23

9
· Nk − (−1)k

4
+
(−1)k

9
(k −2)− (−1)k

+
5

4
Nk − (−1)k

4

=
5

6
k Nk − 23

18
Nk +

(−1)k

18
k − (−1)k

2
.

Therefore, by induction, (3.6) holds for all k ≥ 1.

Let us compare this result to existing algorithms. First, the usual FFT algorithm, with
padding to the next power of 2, uses exactly 2dlog2 ne−1 �log2 n

�

multiplications for a size-n
transform, which in the worst case is n

�

log2 n
�

. The original TFT algorithm improves this
to (n/2)

�

log2 n
�

+O(n) ring multiplications for any size-n transform.

In conclusion, we see that our in-place TFT algorithm gains some improvement over the
normal FFT for sizes that are not a power of two, but not as much improvement as the original
TFT algorithm.

3.6 Implementation

Currently implemented in the MVP library are our new algorithms for the forward and inverse
truncated Fourier transform, as well as our own highly optimized implementations of the
normal radix-2 FFT algorithm both forward and reverse. We ran a number of tests on these
algorithms, alternating between sizes that were exactly a power of two, one more than a power

49

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

Forward FFT Inverse FFT Algorithm 3.1 Algorithm 3.2
Size (seconds) (ratio) (ratio) (ratio)

1024 7.50×10−5 s 1.17 1.62 2.36
1025 1.58×10−4 s 1.23 .949 1.23
1536 1.69×10−4 s 1.09 1.21 1.70
2048 1.62×10−4 s 1.17 1.60 2.83
2049 3.43×10−4 s 1.13 .930 1.24
3072 3.57×10−4 s 1.12 1.21 1.77
4096 3.61×10−4 s 1.14 1.52 2.34
4097 7.66×10−4 s 1.10 .877 1.17
6144 7.74×10−4 s 1.12 1.23 1.78

Table 3.1: Benchmarking results for discrete Fourier transforms

of two, and halfway between two powers of two. Of course we expect the normal radix-2
algorithm to perform best when the size of the transform is exactly a power of two. It would
be easy to handle sizes of the form 2k+1 specially, but we intentionally did not do this in order
to see the maximum potential benefit of our new algorithms.

The results of our experiments are summarized in Table 3.1. The times for the forward FFT
are reported in CPU seconds for a single operation, although as usual for the actual experi-
ments there were several thousand iterations. The times for the other algorithms are reported
only as ratios to the forward FFT time, and as usual a ratio less than one means that algorithm
was faster than the ordinary forward FFT. Our new algorithms are competitive, but clearly not
superior to the standard radix-2 algorithm, at least in the current implementation. While it
might be possible to tweak this further, we submit a few justifications for why better run-time
might not be feasible for these algorithms on modern systems.

First, observe that the structure of our in-place TFT algorithms is not level-by-level, as
with the standard FFT and the forward TFT algorithm of van der Hoeven (2004). Both of our
algorithms share more in common structurally with the original inverse TFT, which has an
inherent recursive structure, similar to what we have seen here. In both these cases, the more
complicated structure of the computation means in particular that memory will be accessed
in a less regular way, and the consequence seems to be a slower algorithm.

Also regarding memory, it seems that a key potential benefit of savings in space is the
ability — for certain sizes — to perform all the work at a lower level of the memory hierarchy.
For instance, if two computations are identical, but one always uses twice as much space
than the other, then for some input size the larger algorithm will require many accesses to
main memory (or disk), whereas the smaller algorithm will stay entirely in cache (or main
memory, respectively). Since the cost difference in accessing memory at different levels of the
hierarchy is significant, we might expect some savings here.

In fact, we will see some evidence of such a phenomenon occurring with the multiplica-
tion algorithms of the next chapter. However, for the radix-2 DFT algorithms we have pre-
sented, this will never happen, precisely because the size of memory at any level in any mod-

50

CHAPTER 3. IN-PLACE TRUNCATED FOURIER TRANSFORM

ern architecture is always a power of two. This gives some justification for our findings here,
but also lends motivation to studying the radix-3 case in the future, as we discuss below.

3.7 Future work

We have demonstrated that forward and inverse radix-2 truncated Fourier transforms can be
computed in-place using O(n log n) time and O(1) auxiliary storage. The next chapter will
show the impact of this result on dense polynomial multiplication.

There is much work still to be done on truncated Fourier transforms. First, we see that our
algorithm, while improving the memory usage, does not yet improve the time cost of other
FFT algorithms. This is partly due to the cost of extra arithmetic operations, but as Theo-
rem 3.5 demonstrates, our algorithm is actually superior to the usual FFT in this measure, at
least in the worst case. A more likely cause for the inferior performance is the less regular
structure of the algorithm. In particular, our in-place algorithms cannot be computed level-
wise, as can the normal FFT and forward TFT algorithms. Developing improved in-place TFT
algorithms whose actual complexity is closer to that of the original TFT would be a useful
exercise.

To this end, it may be useful to consider an in-place truncated version of the radix-3 FFT
algorithm. It should be relatively easy to adapt our algorithm to the radix-3 case, with the
same asymptotic complexity. However, the radix-3 algorithm may perform better in practice,
due to the nature of cache memory in modern computers.

Most of the cache in modern machines is least partly associative — for example, the L1
cache on our test machine is 8-way associative. This means that a given memory location can
only be stored in a certain subset of the available cache lines. Since this associativity is always
based on equivalence modulo powers of two, algorithms that access memory in power-of-
two strides, such as in the radix-2 FFT, can suffer in cache performance. Radix-3 FFTs have
been used in numerical libraries for many years to help mitigate this problem. Perhaps part of
the reason they have not been used very much in symbolic computation software is that the
blow-up in space when the size of the transform is not a power of 3 is more significant than
in the radix-2 version. Developing an in-place variant for the radix-3 case would of course
eliminate this concern, and so may give practical benefits.

Finally, it would be very useful to develop an in-place multi-dimensional TFT or ITFT al-
gorithm. In one dimension, the ordinary TFT can hope to gain at most a factor of two over
the FFT, but a d -dimensional TFT can be faster than the corresponding FFT by a factor of
2d , as demonstrated in (Li et al., 2009). An in-place variant along the lines of the algorithms
presented in this paper could save a factor of 2d in both time and memory, with practical
consequences for multivariate polynomial arithmetic.

51

Bibliography

David H. Bailey. FFTs in external or hierarchical memory. The Journal of Supercomputing, 4:
23–35, 1990. ISSN 0920-8542.
doi: 10.1007/BF00162341. Referenced on page 37.

James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19(90):297–301, 1965.
doi: 10.1090/S0025-5718-1965-0178586-1. Referenced on page 36.

Richard E. Crandall. Topics in advanced scientific computation. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1996. ISBN 0-387-94473-7. Referenced on pages 35 and 39.

Jack Dongarra and Francis Sullivan. Guest editors’ introduction to the top 10 algorithms.
Computing in Science Engineering, 2(1):22–23, January/February 2000. ISSN 1521-9615.
doi: 10.1109/MCISE.2000.814652. Referenced on page 36.

David Harvey. A cache-friendly truncated FFT. Theoretical Computer Science, 410(27–29):
2649–2658, 2009. ISSN 0304-3975.
doi: 10.1016/j.tcs.2009.03.014. Referenced on pages 37 and 40.

David Harvey and Daniel S. Roche. An in-place truncated Fourier transform and applications
to polynomial multiplication. In ISSAC ’10: Proceedings of the 2010 International Sympo-
sium on Symbolic and Algebraic Computation, pages 325–329, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0150-3.
doi: 10.1145/1837934.1837996. Referenced on page 35.

Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss and the history of the
fast Fourier transform. ASSP Magazine, IEEE, 1(4):14–21, October 1984. ISSN 0740-7467.
doi: 10.1109/MASSP.1984.1162257. Referenced on page 36.

Joris van der Hoeven. The truncated Fourier transform and applications. In Proceedings of
the 2004 international symposium on Symbolic and algebraic computation, ISSAC ’04, pages
290–296, New York, NY, USA, 2004. ACM. ISBN 1-58113-827-X.
doi: 10.1145/1005285.1005327. Referenced on pages 40, 47 and 50.

Joris van der Hoeven. Notes on the truncated Fourier transform. Technical Report 2005-5,
Université Paris-Sud, Orsay, France, 2005.
URL http://www.texmacs.org/joris/tft/tft-abs.html. Referenced on page 40.

157

http://dx.doi.org/10.1007/BF00162341
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1109/MCISE.2000.814652
http://dx.doi.org/10.1016/j.tcs.2009.03.014
http://dx.doi.org/10.1145/1837934.1837996
http://dx.doi.org/10.1109/MASSP.1984.1162257
http://dx.doi.org/10.1145/1005285.1005327
http://www.texmacs.org/joris/tft/tft-abs.html

Xin Li, Marc Moreno Maza, and Éric Schost. Fast arithmetic for triangular sets: From theory
to practice. Journal of Symbolic Computation, 44(7):891–907, 2009. ISSN 0747-7171.
doi: 10.1016/j.jsc.2008.04.019. International Symposium on Symbolic and Algebraic
Computation. Referenced on pages 40 and 51.

John D. Markel. FFT pruning. Audio and Electroacoustics, IEEE Transactions on, 19(4):305–
311, December 1971. ISSN 0018-9278.
doi: 10.1109/TAU.1971.1162205. Referenced on page 40.

Henrik V. Sorensen and C. Sidney Burrus. Efficient computation of the DFT with only a subset
of input or output points. Signal Processing, IEEE Transactions on, 41(3):1184–1200, March
1993. ISSN 1053-587X.
doi: 10.1109/78.205723. Referenced on page 40.

158

http://dx.doi.org/10.1016/j.jsc.2008.04.019
http://dx.doi.org/10.1109/TAU.1971.1162205
http://dx.doi.org/10.1109/78.205723

	In-place Truncated Fourier Transform
	Background
	Primitive roots of unity and the discrete Fourier transform
	Fast Fourier transform
	FFT variants
	Computing the FFT in place
	The truncated Fourier transform
	DFT notation

	Computing powers of omega
	Space-restricted TFT
	Space-restricted ITFT
	More detailed cost analysis
	Implementation
	Future work

	Bibliography

