
 Arithmetic for Sparse Integers and Floats
Midshipman 1/C Mark Atkins, James Browning III, and Norman Overfield

Assistant Professor Daniel S. Roche, Computer Science

● We created three implementations for
dense, sparse and floating point numbers.

● Our splint class was extensively tested
against the state-of-the-art GMP library.

● The current crossover point where sparsity
“wins” is around 1 million bits and 100
sparse nodes.

● Sparse integers and floating point numbers
may have applications in improving
cryptography and numerical computation.

● More work is needed to determine the
feasibility of these applications.

• Base 10 integer: 1112455258097
• Base 2 dense representation (41 bits):

10000001100000011100000000001111111110001

• Sparse representation
 8 bit window size,
 5 nodes.

Window Size: The maximum number of bits in each coefficient
(-15, 1, 7, 3, and 1 in this example). With window size we can store
values between -128 and 127. If there is overflow, a new node will
be created.

Nodes: Nodes default to store coefficients up to 32 bits, and
differences up to 16 bits. Customizable through templates.

Storage: Nodes are stored in vectors, with each node containing a
coefficient value, and the difference. Which is the length to the
start of the next node.

Conversion of “dense” integer: We take a dense number, and through a process
involving modulo, subtraction, and right shifting, produce the optimal sparse
representation.

Addition/Subtraction: Addition is similar to merging. We do this by adding up the
nodes of two sparse integers one at a time until the sum is calculated. The two least
significant nodes are compared, and whichever has the smallest difference value is
added to the sum.

Multiplication: Calculated by multiplying one node of one sparse integer by every
node in the other sparse integer. This is done for all nodes, and all of these are
summed.

-15
0 9 8

3 11
13

7
10

Fixed Precision Floating Point Arithmetic
The Idea: The MPFR library implements floating point
calculations using GMP; we achieved this functionality using
sparse integers.

Composition: We use a splint type to store our mantissa, with
a long integer holding our exponent.

Capability: We are able to extend our splint functionality to
make floating point calculations.

This material is based upon work supported by the National Science Foundation under Grant No. 1319994, "AF: Small: RUI: Faster Arithmetic for Sparse Polynomials and Integers".

Timing comparison for GMP vs. our library

