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Representation of Sparse Polynomials

Let F be a field and f (x) ∈ F[x ] of degree n.
f (x) in dense form is

f (x) = f0 + f1x + f2x
2 + · · ·+ fnx

n.

f (x) in sparse form is

f (x) = a1x
e1 + a2x

e2 + · · · + atx
et

ai ’s nonzero in F

ei ’s in Z with e1 < e2 < . . . < et = n

t is the sparsity of f (x)

Sparse size is
∑t

i=1(size(ai ) + lg ei )

Can be exponentially smaller than the dense size

This representation is the default in Maple, Mathematica, etc.
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Alternate Notions of Sparsity

Definition (Sparse Shifts)

If f (x) has at most t nonzero terms in the shifted power basis
1, (x − α), (x − α)2, . . ., for some α ∈ F, then we say
α is a t-sparse shift for f (x).

Theorem (Lakshman & Saunders [LS96])

If t ≤ d+1
2 , then there is at most one t-sparse shift

for any polynomial f (x) ∈ F[x ].

Definition (Black Box)

A black box for a polynomial f (x) ∈ F[x ] is a procedure which,
when given any element θ ∈ F, returns the value of f (θ).
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Polynomial-Time Operations

Basic Arithmetic Addition, subtraction, multiplication

Division Euclidian division (quotient and remainder) —
polynomial time in the size of the
input and output polynomials.

Interpolation Determine a sparse polynomial from its black box,
provided we can compute logarithms in F
[BOT88, KL03]

Root Finding Find all distinct low-degree factors [CKS99, Len99]
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Intractable Operations

Exponentiation Raising a sparse polynomial to the r ’th power
could increase the size of the output
by an exponential factor.

Factorization The factors could be dense,
meaning the operation could be exponential.

GCD Provably hard to determine even if the GCD
of two sparse polynomials is 1 [Pla84]

Divisibility? A polynomial-time divisibility test for sparse
polynomials is a basic open question in this area.
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Sparsest Shift Interpolation

First polynomial-time algorithm to compute sparsest shift
α of f (x) given in [LS96], later improved in [GKL03].

Requires that f (x) be given explicitly in dense form.

Question

Can we find the sparsest shift α of a polynomial f (x) ∈ F[x ],
given a black box for f (x) and using time polynomial in the
size of the sparsest shift?

We have a solution to a particular instance of this problem:
Let f (x) ∈ Z[x ], and suppose we are given a black box
which takes θ ∈ Z and prime p, and returns f (θ) mod p.
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Preliminaries

Let p be a prime with p ≥ t2.
From Fermat’s Little Theorem,
ap−1 ≡ 1 mod p whenever p ∤ a.
So ∃ fp(x) ∈ Zp[x ] of degree at most p − 2
such that fp(θ) ≡ f (θ) mod p for all θ ∈ Z.

If f (x) =
∑t

i=1 ai(x − α)ei , then

fp(x) =
t

∑

i=1

(ai mod p) (x − (α mod p))ei mod (p−1)
,

and therefore α is a t-sparse shift for fp(x).
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Algorithm: Sparsest Shift Interpolation

1 Choose a prime p from a sufficiently large set
such that t2 < p < tO(1).

2 Use the black box to compute vi = f (i) mod p

for i = 1, 2, . . . , p − 1.

3 Use (dense) Lagrange interpolation to find fp(x).

4 If deg(fp(x)) ≥ 2t − 1, then use the algorithm from [GKL03]
to find the sparsest shift αp in Zp.

5 Repeat O(log α) times until α can be recovered
from the αp’s via Chinese Remaindering
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Comments on the algorithm

If deg(fp(x)) ≥ 2t − 1, then we know from [LS96]
that α mod p is the sparsest shift, since it is
a t-sparse shift (from before).

α must be the root of n − t derivatives of f (x).
Roots of any derivative of f (x) in Z are bounded by the
maximal and minimal roots of f (x) itself, which in turn must
divide the trailing coefficient of f (x).
So the size of α is less than the size of f (x).

The tricky part of the analysis is constructing the
set of primes S in such a way that deg fp ≥ 2t − 1
with high probability (not shown here).

Algorithm runs in polynomial time in
the sparse size of f (x + α).
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Polynomial Decomposition

The problem of (simple) functional decomposition
of polynomials is, given f (x) ∈ F[x ], find g(x), h(x) ∈ F[x ],
each with degree at least 2, such that f (x) = g(h(x)).

Functional Decomposition Algorithms

Univariate [KL89, vzG90]

Rational functions [Zip91]

Sparsest complete decomposition [LS96]

Algebraic functions [KLZ96]

Multivariate [vzGGR03, FJ06]

All of these algorithms take polynomial time in the degree of f .
Can we compute a simple univariate decomposition in
polynomial time in the sparse size of f ?



Page 11 of 20

Problem Statement and Simplifications

Problem

Given f (x), find g(x) and h(x) such that f (x) = g(h(x)).

f (x) is given in the α-shifted power basis

g(x) is returned in the sparsest shifted power basis, β

h(x) is returned in the α-shifted power basis

Polynomial time in the size of the input and output

Can assume that f , g , h are all monic and α = β = 0, since

f (x + α)

lc(f )
=

(

g (lc(h)(x + β))

lc(f )

)

◦

(

h(x + α)

lc(h)
− β

)

(lc(f ) and lc(h) are leading coefficients of f (x) and h(x))
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Finding h(x) of low degree

Lemma 2 from [KL89] tells us that f (x) and h(x)
agree in their high-order s coefficients.
So define f̃ (x) = xnf ( 1

x ) and h̃(x) = xsh( 1
x )

to be the reversals of f (x) and h(x), respectively. Then

f̃ (x) ≡ h̃(x)r mod xs . (1)

Uniquely determines h(x) up to the constant term

Can solve with O(sO(1)) field operations, as in [vzG90]

So if s is sufficiently small, we can find it in polynomial time
in the sparse size of f (x).
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Certifying low-degree h

Question

How to efficiently check whether a given h(x)
is a right composition factor of f (x)?

Let Ψh(x , y) = h(x)− h(y) and Ψf (x , y) = f (x)− f (y)

h(x) is a right composition factor of f (x)
iff Ψh(x , y) | Ψf (x , y) [FM69]

Note Ψh(x , y) does not depend on h(0)

[KK05] gives a method to efficiently check whether a low-degree
bivariate factor divides a high-degree sparse bivariate polynomial.
We can use this method to efficiently (probabilistically) check
whether Ψh(x , y) | Ψf (x , y), therefore checking
whether the h(x) we have found is correct.
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Finding h(x) of high degree

Conjecture of Schinzel [Sch87]

If any power of a polynomial is sparse, then
the polynomial itself must also be sparse.

Subject to this conjecture, we can compute h(x)
(up to its constant coefficient) in polynomial time in the size of f

and the size of h, by using a careful Newton-like iteration.
Let h̃1(x) and h̃2(x) be polynomials of degree k and l such that

h̃(x) ≡ h̃1(x) + h̃2(x)xk mod xk+l ,

where k, l ∈ Z with 1 ≤ l ≤ k and k + l ≤ s.
Then, from (1) and the binomial theorem,

f̃ (x) ≡ h̃1(x)r + r h̃1(x)r−1h̃2(x)xk mod xk+l . (2)
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Finding h(x) of high degree (2)

Through some careful manipulation, we obtain

h̃1(x)r+1 ≡ h̃1(x)f̃ (x)− r f̃ (x)h̃2(x)xk mod xk+l .

So h̃1(x)r+1 mod xk+l is sparse, and therefore from
Shinzel’s conjecture, we can compute it by repeated squaring.
Manipulating (1) again, we see that

(

1

rxk

)

(

h̃1(x)f̃ (x)− h̃1(x)r+1
)

≡ f̃ (x)h̃2(x) mod x l .

We can compute the quotient of the left-hand side divided by
f̃ (x) mod x l in polynomial time since the quotient, h̃2(x), is sparse,
and f̃ (x) has constant coefficient 1.
Thus we can compute h̃2(x) in polynomial time.
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Algorithm: Finding high-degree h(x)

1 h̃1(x)← 1; k ← 1

2 l ← min{k, s − k}

3 Perform iteration from before to find h̃2(x) of degree l

4 h̃1(x)← h̃1(x) + h̃2(x)xk ; k ← k + l

5 Repeat steps 2–4 until k = s

6 Return xs h̃1(
1
x )

Note:

h̃(x) ≡ 1 mod x since h(x) is monic; this is the starting point
for our iteration.

The last step just computes the reversal of h̃1(x) — this can
be done “for free”. So the whole algorithm runs in polynomial
time in the sparse sizes of f (x) and h(x).



Page 17 of 20

Finding g(x) when r is small

We now show how to find g(x) when h(x)− h(0) is known,
using dense interpolation.

1 Choose r + 1 distinct points θ0, . . . , θr ∈ F

2 Compute ui = h(θi)− h(0) and vi = f (θi) for i = 0, . . . , r

3 Use Lagrange interpolation to compute g(x + h(0)).

4 Use the sparsest shift algorithm of [GKL03] to find h(0),
and finally compute g(x) and h(x)

We need the ui ’s to all be distinct; the Schwartz-Zippell Lemma
guarantees this with high probability if the θi ’s are chosen
from a large enough set.
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Future Work

Using our sparsest shift interpolation algorithm to find
g(x) of high degree given h(x)

Extending the sparsest shift interpolation algorithm
to work over fields other than Z[x ]

Eliminating the dependency of the algorithm for
finding high-degree h(x) on any conjectures

Removing the output-sensitivity of the runtime
(i.e. proving that h(x) and g(x) are always sparse
when f (x) is sparse) — relates to [Erd49, CD91, Abb02]
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