
Space- and Time-Efficient Polynomial Multiplication

Daniel S. Roche
Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

droche@cs.uwaterloo.ca
www.cs.uwaterloo.ca/˜droche/

ABSTRACT
Countless algorithms have been developed for the multiplica-
tion of univariate polynomials and multi-precision integers,
but all those with sub-quadratic time complexity currently
require at least Ω(n) extra space for the computation. A
new routine based on the Karatsuba/Ofman algorithm is
presented with the same time complexity of O(n1.59) but
only O(logn) extra space. A second routine based on the
method of Schönhage/Strassen achieves the same pseudo-
linear time and O(1) extra space, but only under certain
conditions. A preliminary implementation over Fp[x], where
p fits into a single machine word, is presented and compared
with existing software.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on polynomials; G.1.0 [Numerical Analysis]: General—
Multiple precision arithmetic; G.4 [Mathematical Soft-
ware]: Algorithm design and analysis, Efficiency

General Terms
Algorithms, Performance, Theory

Keywords
Polynomial multiplication, integer multiplication, space ef-
ficiency, time-space tradeoff

1. INTRODUCTION
The multiplication of univariate polynomials and multi-

precision integers is one of the most basic and crucial opera-
tions for efficient mathematical and symbolic computation.
These routines form the low-level basis of any computer al-
gebra system, and specific high-performance libraries such
as NTL [14] and GMP [6] have been built around fast arith-
metic operations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$5.00.

Consider the problem of computing the product of two
degree-n polynomials or integers whose length is n machine
words. Significant algorithmic progress has been made in
improving the time complexity from O(n2) for the classi-
cal algorithm. The two-way divide and conquer algorithm
which we refer to as Karatsuba’s was first introduced in
[10] and has complexity O(n1.59). This was later general-
ized to a k-way divide and conquer scheme by Toom and
Cook [17, 4]; in particular, when k = 3, an O(n1.47) algo-
rithm is produced. The use of the Fast Fourier Transform
(FFT) algorithm [5] made the “quasi-linear” time complex-
ity of O(n logn loglogn) possible — first for long integer
multiplication [13], and later for polynomials over arbitrary
algebras [3]. Current best results give an upper bound of

O(n logn2O(log∗ n)) time complexity for multiplication [7].
In a typical high-performance implementation, either for in-
tegers or polynomials, the classical algorithm is used for the
smallest operands, followed by a range where the divide-and-
conquer approaches are best (always Karatsuba and some-
times Toom-Cook 3-way as well), and FFT-based methods
are used for the largest inputs.

1.1 Measuring Space Efficiency
Unfortunately, all known multiplication algorithms other

than the classical method require at least a linear amount of
extra storage space. Our goal is to improve this, specifically
for the Karatsuba and FFT-based methods. First we must
specify exactly what is meant by the term “extra space”.

Branching programs are a fairly general model of com-
putation and in particular lower bounds for branching pro-
grams also apply to straight line programs and random ac-
cess machine models. Branching programs essentially allow
random access to the read-only input and random writes to
the output, but each position of the output can only be writ-
ten to once and never read. In this model, a lower bound
of Ω(n2) time times space complexity is known [1]. This
means that, while constant space is possible for the classical
algorithm, all the other multiplication methods above will
require at least a polynomial amount of space in the branch-
ing program model, and hence significant progress will not
happen here.

For this reason, we depart from the traditional models
of computation and space complexity measures and instead
use what we consider to be a more practical model based on
a typical modern architecture. Fortunately, the only signif-
icant change required is that we allow multiple writes and
reads to/from the output space. Perhaps surprisingly, this
small change allows significant improvements from the Ω(n2)

http://www.cs.uwaterloo.ca/~droche/

time times space lower bound in branching programs for
multiplication.

Specifically, we partition the memory accessed by a pro-
gram into three parts: a read-only input space, a read/write
work space, and a read/write output space. The program
has random access to all three, with unit cost for any read or
write operation, and obviously the size of the output space
can never be larger than the actual output from the algo-
rithm. We only count the size of the work space, which we
call the “extra space” required for the algorithm.

For the multiplication of multiple-precision integers, each
memory location can hold one word-sized integer, and ba-
sic arithmetic operations on word-sized integers have unit
cost. When multiplying univariate polynomials over a ring
R, each memory location can also hold an element in R and
arithmetic operations in R also have unit cost. While this
is a more powerful model than those above, it corresponds
more closely to actual computation on a modern computer.

Even in this more powerful model, known methods re-
quire at least linear extra space for every multiplication algo-
rithm other than the classical one. In [12], Monagan shows
how to implement the classical algorithm with O(1) extra
space, and discusses the importance of space efficiency in
basic polynomial arithmetic. Since then, a number of au-
thors have concentrated specifically on space efficiency in
Karatsuba’s algorithm. Upper and lower bounds of Θ(n)
for the amount of extra space for Karatsuba multiplication
are derived in [11] and then used to preallocate storage for
all recursive calls. For polynomial multiplication, [16] shows
how to reduce the space by half by reusing the output space
for some intermediate products, and conjectures that less
than linear extra space is not possible. Many of these re-
sults are summarized in the forthcoming book by Brent and
Zimmermann, which states “The efficiency of an implemen-
tation of Karatsuba’s algorithm depends heavily on memory
usage” [2].

1.2 Overview
The current aim is to develop schemes for multiplication

which achieve less than O(n2) time complexity and use as
little extra space as possible. In Section 2 a recursive algo-
rithm is presented with the same time complexity as Karat-
suba but only a constant amount of extra space at each
step, for a total of O(logn) extra space. Section 3 gives an
algorithm for FFT-based multiplication with the same time
complexity but only O(1) extra space, under certain condi-
tions. Implementation issues for these new algorithms are
discussed in Section 4.

2. SPACE-EFFICIENT KARATSUBA MUL-
TIPLICATION

Gauss was perhaps the first to notice that the multiplica-
tion of two complex numbers (a + bi) and (c + di) can be
performed with only three multiplications in R as

(a+ bi)(c+ di) = ac− bd+ ((a+ b) (c+ d)− ac− bd) i.

Karatsuba and Ofman used this idea to develop a scheme
for long integer multiplication in [10]. The description of
the algorithm is cleanest when multiplying polynomials in
R[x] with equal sizes that are both divisible by 2, so for
simplicity we will present that case first. The corresponding
methods for odd-sized operands, different-sized operands,

and multiple-precision integers will follow fairly easily from
this case.

2.1 Standard Karatsuba Algorithm
For polynomials f, g ∈ R[x] each with degree less than 2k,

the Karatsuba algorithm first splits each input polynomial
into high- and low-degree parts by writing

f = f0 + f1x
k, g = g0 + g1x

k, (1)

where each of f0, f1, g0, g1 is a polynomial in R[x] with degree
less than k. We then compute three intermediate products:

α = f0 ·g0, β = f0 ·f1, γ = (f0 +f1) · (g0 +g1). (2)

Finally, these products are combined to produce the product
of f and g as follows:

f · g = α+ (γ − α− β) · xk + β · x2k. (3)

A straightforward implementation might allocate n units
of extra storage at each recursive step to store the interme-
diate product γ, resulting in an algorithm that uses a linear
amount of extra space and performs approximately 4n ad-
ditions of ring elements besides the three recursive calls.

There is of course significant overlap between the three
terms of (3). To see this more clearly, split each polynomial
α, β, γ into its low-order and high-order coefficients as in (1).
Then we have (with no overlap):

f ·g = α0+(γ0+α1−α0−β0)xk+(γ1+β0−α1−β1)x2k+β1x
3k

(4)
Examining this formulation, we see that the difference

α1 − β0 occurs twice, so the number of additions can be
reduced to 7n/2 at each recursive step. This has been no-
ticed by others, who have also made improvements in the
amount of extra space, but never less than O(n) [11, 16, 2].

2.2 Improved algorithm: general formulation
Again, we first present our algorithm in the easiest case,

for multiplication of univariate polynomials that have equal
and even sizes.

The key to obtaining O(logn) extra space for Karatsuba-
like multiplication is by solving a slightly more general prob-
lem. In particular, two extra requirements are added to the
algorithm at each recursive step.

Condition 2.1. The low-order n coefficients of the out-
put space are pre-initialized and must be added to. That
is, half of the product space is initialized with a polynomial
h ∈ R[x] of degree less than n.

With Condition 2.1, the computed result should now equal
h+ f · g.

Condition 2.2. The first operand to the multiplication f
is given as two polynomials which must first be summed be-
fore being multiplied by g. That is, rather than a single poly-
nomial f ∈ R[x], we are given two polynomials f (0), f (1) ∈
R[x], each with degree less than n.

With both these conditions, the result of the computation
should be h+ (f (0) + f (1)) · g.

Of course, these conditions should not be made on the
very first call to the algorithm, and this will be discussed
in the next subsection. We are now ready to present the
algorithm in the easiest case that f, g ∈ R[x] with deg f =

deg g = 2k − 1 for some k ∈ N. If A is an array in memory,
we use the notation of A[i..j] for the sub-array from indices i
(inclusive) to j (exclusive), with 0 ≤ i < j ≤ |A|. If array A
contains a polynomial f , then the array element A[i] is the
coefficient of xi in f . The three read-only input operands
f (0), f (1), g are stored in arrays A,B,C, respectively, and
the output is written to array D. From the first condition,
D[0..2k] is initialized with h.

Algorithm SE_KarMult_1+2.

Input: k ∈ N and f (0), f (1), g, h ∈ R[x] with degrees less
than 2k in arrays A,B,C,D, respectively

Output: h+ (f (0) + f (1)) · g stored in array D
1: D[k..2k]← D[k..2k] +D[0..k]
2: D[3k − 1..4k − 1]←

A[0..k] +A[k..2k] +B[0..k] +B[k..2k]
3: D[k..3k − 1]←

SE_KarMult_1+2(C[0..k], C[k..2k], D[3k−1..4k−1])

4: D[3k − 1..4k − 1]← D[k..2k] +D[2k..3k − 1]
5: D[0..2k−1]← SE_KarMult_1+2(A[0..k], B[0..k], C[0..k])

6: D[2k..3k − 1]← D[2k..3k − 1]−D[k..2k − 1]
7: D[k..2k]← D[3k − 1..4k − 1]−D[0..k]
8: D[2k..4k − 1]←

SE_KarMult_1+2(A[k..2k], B[k..2k], C[k..2k])
9: D[k..2k]← D[k..2k]−D[2k..3k]

10: D[2k..3k − 1]← D[2k..3k − 1]−D[3k..4k − 1]

Table 1 summarizes the computation by showing the ac-
tual values (in terms of the input polynomials and interme-
diate products) stored in each part of the output array D
after each step of the algorithm. Between the recursive calls
on Steps 3, 5, and 8, we perform some additions and rear-
ranging to prepare for the next multiplication. Notice that a
few times a value is added somewhere only so that it can be
cancelled off at a later point in the algorithm. An example
of this is the low-order half of h, h0, which is added to h1

on Step 1 only to be cancelled when we subtract (α0 + h0)
from this quantity later, on Step 7.

The final value stored in D after Step 10 is

(h0 + α0) + (h1 + α1 + γ0 − α0 − β0)xk

+ (β0 + γ1 − α1 − β1)x2k + β1 · x3k, (5)

which we notice is exactly the same as (4) with the addition
of h0 + h1x

k as specified by Condition 2.1.
The base case of the algorithm will be to switch over to

the classical algorithm for multiplication; the exact size at
which the classical algorithm should be preferred will depend
on the implementation. We do not give the details, but it
is straightforward to implement the classical multiplication
without using any auxiliary storage space, even with the two
extra conditions. This proves the correctness of the following
theorem:

Theorem 2.3. Let f (0), f (1), g, h ∈ R[x] be polynomials
each with degree one less than n = 2b for some b ∈ N. Algo-
rithm SE_KarMult_1+2 correctly computes h+ (f (0) + f (1)) ·
g using the output space (which is initialized with h) and
O(logn) extra space, and has time complexity O(nlog2 3), or
O(n1.59).

Proof. The size of the input polynomials n must be a
power of 2 so that each recursive call is an even-sized argu-
ments (until the last recursive call when each of f (0), f (1), g, h

is just a scalar in R). Correctness follows from the discussion
above. We can see that there are exactly three recursive calls
on input of one-half the size of the original input, and this
gives the stated time complexity bounds. Finally, we see
that only O(1) extra space is used at each recursive step,
for a total of O(logn) extra space, as log2 n is the depth of
recursion.

2.3 Initial calls
The initial call to compute the product of two polynomials

f and g will not satisfy Conditions 2.1 and 2.2 above. So
there must be top-level versions of the algorithm which do
not solve the more general problem of h+ (f (0) + f (1)) · g.

Working backwards, first denote by SE_KarMult_1 an al-
gorithm similar to Algorithm SE_KarMult_1+2, but which
does not satisfy Condition 2.2. Namely, the input will be
just three polynomials f, g, h ∈ R[x], with h stored in the
low-order half of the output space, and the algorithm com-
putes h + f · g. In this version, two of the additions on
Step 2 are eliminated. The function call on Step 3 is still
to SE_KarMult_1+2, but the other two on Steps 5 and 8 are
recursive calls to SE_KarMult_1.

Similarly, SE_KarMult will be the name of the top-level
call which does not satisfy either Condition 2.1 or 2.2, and
therefore simply computes a single product f · g into an
uninitialized output space. Here again we save two array
additions on Step 2, and Step 1 is replaced with the instruc-
tion:

D[0..k]← C[0..k] + C[k..2k],

so that the first two function calls on Steps 3 and 5 are
recursive calls to SE_KarMult, and only the last one on Step 8
is a call to SE_KarMult_1.

The number of additions (and subtractions) at each recur-
sive step determine the hidden constant in the O(n1.59) time
complexity measure. We mentioned that a näıve implemen-
tation of Karatsuba’s algorithm uses 4n additions at each
recursive step, and it is easy to improve this to 7n/2. By
inspection, Algorithm SE_KarMult_1+2 uses approximately
9n/2 additions at each recursive step, and therefore both
SE_KarMult_1 and SE_KarMult use only 7n/2 additions at
each recursive step, matching the best known existing algo-
rithms. So although calls to SE_KarMult_1+2 will eventually
dominate, incurring a slight penalty in extra arithmetic op-
erations, most of the initial calls, particularly for smaller
values of n (where Karatsuba’s algorithm is actually used),
will be to SE_KarMult_1 or SE_KarMult, and should not be
any more costly in time than a good existing implementa-
tion. This gives us hope that our space-efficient algorithm
might be useful in practice; see Section 4 for more discussion
on this topic.

2.4 Unequal and odd-sized operands
So far our algorithm only works when both input polyno-

mials have the same degree which is one less than a power
of two, since the size of both operands at each recursive call
must be even. Special cases to handle the cases when the in-
put polynomials have even degree (i.e. odd size) or different
degres will resolve these issues and give a general-purpose
multiplication algorithm.

First consider the case that deg f (0), deg f (1), deg g, and
deg h are all equal to 2k for some k ∈ N, so that each
polynomial has an odd number of coefficients. It is easy

D[0..k] D[k..2k] D[2k..3k − 1]∗ D[3k − 1..4k − 1]∗

0 h0 h1 — —
1 h0 h0 + h1 — —

2 h0 h0 + h1 — f
(0)
0 + f

(0)
1 + f

(1)
0 + f

(1)
1

3 h0 h0 + h1 + γ0 γ1 f
(0)
0 + f

(0)
1 + f

(1)
0 + f

(1)
1

4 h0 h0 + h1 + γ0 γ1 h0 + h1 + γ0 + γ1

5 h0 + α0 α1 γ1 h0 + h1 + γ0 + γ1

6 h0 + α0 α1 γ1 − α1 h0 + h1 + γ0 + γ1

7 h0 + α0 h1 + γ0 + γ1 − α0 γ1 − α1 h0 + h1 + γ0 + γ1

8 h0 + α0 h1 + γ0 + γ1 − α0 β0 + γ1 − α1 β1

9 h0 + α0 h1 + α1 + γ0 − α0 − β0 β0 + γ1 − α1 β1

10 h0 + α0 h1 + α1 + γ0 − α0 − β0 β0 + γ1 − α1 − β1 β1

∗The last two sub-arrays shift by one to D[2k..3k] and D[3k..4k − 1] at Step 8.

Table 1: Values stored in D through the steps of Algorithm SE_KarMult_1+2

to get the same asymptotic result here, by simply pulling off
the low-order coefficients of the input and writing the result
h+ (f (0) + f (1)) · g as

h0 + h1x+ ĥx2 + (f
(0)
0 + ˆf (0)x+ f

(1)
0 + ˆf (1)x) · (g0 + ĝx).

A rearrangement produces a single call to SE_KarMult_1+2

with even-length arguments, ĥ+ (ˆf (0) + ˆf (1)) · ĝ, three addi-
tions of a scalar times a polynomial, and a few more scalar
products and additions. Since we can multiply a polynomial
by a scalar and add to a pre-initialized result without using
any extra space, this still achieves the same asymptotic time
complexity and O(logn) extra space, albeit with a few ex-
tra arithmetic operations. There are probably more efficient
ways to tackle the odd-sized case, by some slight shifting of
the intermediate results in the output array, but we have
not yet fully investigated them.

This handles the multiplication of any two polynomials
with the same degree, but what if the polynomials have dif-
ferent degrees? In this case, we use the well-known trick of
blocking the larger polynomial into sub-arrays whose length
equal the degree of the smaller one. That is, given f, g ∈ R[x]
with n = deg f , m = deg g and n > m, we write n = qm+ r
and reduce the problem to computing q products of a degree-
m by a degree-(m − 1) polynomial and one product of a
degree-m by a degree-(r − 1) polynomial. Further special
cases of the algorithms above are now needed to handle poly-
nomial multiplication where the degrees of f and g differ by
one, but this is relatively straightforward as above.

Each of the q initial products overlap in exactly m coef-
ficients (half the size of the output), so Condition 2.1 ac-
tually works quite naturally here, and the q m-by-(m − 1)
products are calls to a version of SE_KarMult_1. The single
m-by-(r − 1) product is performed first (so that the entire
output is uninitialized), and this is done by a recursive call
to this same procedure multiplying arbitrary unequal-length
polynomials.

All these special cases are available for more careful exam-
ination in the implementation discussed later, and they give
the following, which again is the first sub-quadratic multi-
plication algorithm to do better than O(n) extra space.

Theorem 2.4. For any f, g ∈ R[x] with degrees less than
n, the product f · g can be computed using O(logn) extra
space and O(nlog2 3) or O(n1.59) operations in R and on
word-sized integers.

3. SPACE-EFFICIENT FFT-BASED MULTI-
PLICATION

The fastest practical algorithms for integer and polyno-
mial multiplication are based on Fourier transforms. Sup-
pose we want to compute the product of f, g ∈ R[x], where
deg f + deg g < n. Using the notation of [8], we say that
ω ∈ R is an n-PRU (primitive root of unity) iff ωn = 1 and
ωi 6= 1 for 1 ≤ i < n. Then the discrete Fourier transform
of a sequence (a0, a1, . . . , an−1) ∈ Rn at ω is defined as

DFTω(a0, a1, . . . , an−1) =

n−1X
j=0

aj · ωij
!

0≤i≤n−1

.

This transform can be used for both multi-point evalua-
tion and interpolation of polynomials. If we write f ∈ R[x]
as

f = f0 + f1x+ f2x
2 + · · ·+ fn−1x

n−1

(noticing that all fi with i > deg f will equal zero), it is easy
to see that

DFTω(f0, . . . , fn−1) =
`
f(ω0), . . . , f(ωn−1)

´
1

n
DFTω−1(f(ω0), . . . , f(ωn−1)) = (f0, . . . , fn−1)

For the remainder, we will write DFTω(f) as a shorthand
for the discrete Fourier transform of the coefficients. The
Fast Fourier Transform (FFT) [5] is an algorithm to compute
DFTω using O(n logn) operations in R which has become
one of the most useful and important algorithms in computer
science. To compute the product of f, g ∈ R[x], we then
simply use the FFT three times to compute:

f · g =
1

n
DFTω−1 (DFTω(f) ∗DFTω(g)) ,

where ∗ signifies pairwise multiplication of vector elements.
This works provided the degree of the product is less than
n and n is a power of 2, say 2k for some k ∈ N.

The real difficulty lies in the requirement that R contains
an n-PRU ω. When it does not, we can construct a so-
called virtual root of unity by working in a larger field and
incurring an extra multiplicative factor of loglogn in the
complexity [13, 3]. But here we explicitly dodge this issue
by simply assuming that the ring R already contains an n-
PRU ω.

We will also assume in all cases that deg f+deg g = n−1 =
2k − 1, so that the size of the output is the same as the size
of the FFT that we need to compute. This is in some sense
unavoidable, as even the truncated version of the FFT al-
gorithm requires 2dlog2 ne space at some intermediate step
(where n is the size of the output) [18]. When these condi-
tions are met, the algorithm we now present will use only
O(1) extra space to multiply f and g, but even in the most
general case we will save O(n) auxiliary space compared to
the standard implementation, and hence the algorithm pre-
sented can have broader implications.

3.1 Reverted binary ordering
The FFT algorithm has been well-studied, and in partic-

ular can be implemented completely in-place. That is, the
procedure overwrites the input sequence with the DFT of
that sequence, using only a constant amount of extra space.
Although “self-sorting” methods are known which compute
the output in order (see e.g. [15]), the standard and simplest
in-place algorithm computes the output in the “reverted bi-
nary ordering”. This is defined by the operator revk which
transforms a k-bit binary number into another by reversing
the order of the binary digits. So, for example, rev6(58) = 23
because 58 = 1110102 and 23 = 0101112. The reverted bi-
nary ordering of the numbers 0, 1, . . . , 2k − 1 is simply the
sequence revk(0), revk(1), . . . , revk(2k − 1). For k = 4, this
sequence is

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15.

The following property will be useful for us:

Lemma 3.1. For all k ∈ N, the reverted binary order of
the positive k-bit integers, (revk(i))0<i<2k , can be written as
a concatenation of sequences:„“

2k−i revi(j) + 2k−i−1
”

0≤j<2i

«
0≤i<k

Proof. For any k ∈ N, it is easy to see that the sequence
(revk(i))0≤i<2k can be written as the concatenation of two
sequences as

(2 revk−1(i))0≤i<2k−1 , (2 revk−1(i) + 1)0≤i<2k−1 .

Applying this formula recursively to the left-most concate-
nated subsequence k times, then removing the leading 0,
gives the stated result.

3.2 Folded polynomials
A standard implementation of FFT-based multiplication

needs to compute two size-n DFT’s (of f and of g) in two
size-n arrays (one of which could be the output space), then
multiply pairwise elements to compute DFTω(f · g). The fi-
nal DFT operation could be computed in-place in the output
space.

Our approach avoids the need for the extra n-sized array
for the initial DFT computation by computing first com-
puting half of DFT(f · g), then half of what remains, half
of what remains again, and so forth until the operation is
complete. The partial DFTs computed are defined by the
following polynomials (here and hereafter rem indicates the
remainder in exact division):

Definition 3.2. Let f ∈ R[x] and m ∈ N such that θ ∈ R
is a 2m-PRU. Then the folded polynomial P 〈f, θ〉 ∈ R[x] is

f (θ · x) remxm − 1

If f =
P
j≥0 fjx

j , then we can also write P 〈f, θ〉 asX
j≥0

θjfjx
j remm.

Using this formula, we can easily compute P 〈f, θ〉 using the
space of the output and only O(1) extra space in O(deg f)
time.

We also observe the following property due to the fact
that (θ2i)m − 1 = 0 for any i ∈ N:

Lemma 3.3. Let f ∈ R[x] and m ∈ N such that θ ∈ R is
a 2m-PRU. Then, for all i ∈ N,

P 〈f, θ〉(θ2i) = f(θ2i+1).

Finally, we need the following fact relating the folded poly-
nomials to the reverted binary ordering:

Lemma 3.4. Let f ∈ R[x] and k ∈ N such that ω ∈ R is a
2k-PRU. Then the following two sequences are equivalent:

(a)
“
f(ωrevk(i))

”
0<i<2k

(b)

„“
P 〈f, ω2k−i−1

〉(ω2k−i revi(j))
”

0≤j<2i

«
0≤i<k

Proof. From Lemma 3.3, we know that

P 〈f, ω2k−i−1
〉
“
ω2k−i revi(j)

”
= f

“
ω2k−i revi(j)+2k−i−1

”
.

Therefore sequence (b) is equivalent to„“
f(ω2k−i revi(j)+2k−i−1

)
”

0≤j<2i

«
0≤i<k

.

By Lemma 3.1, this is exactly the same as sequence (a).

3.3 Constant-space algorithm
Our strategy for FFT-based multiplication with O(1) ex-

tra space is then to compute

DFT
ω2k−i

“
P 〈f · g, ω2k−i−1

〉
”

for i = k − 1, k − 2, . . . , 0, storing them in reverse order in
the output space, so that we end up with the sequence of
Lemma 3.4 for the polynomial f · g. Since the evaluations
of this polynomial at powers of ω are now stored in reverted
binary order, a single in-place FFT operation on the entire
array produces the coefficients of the result in order. This
approach is presented in Algorithm SE_FFTMult.

Theorem 3.5. Let n = deg f+deg g+1 be the size of the
output polynomial. Algorithm SE_FFTMult works correctly as
stated in time O(n logn) using O(2k − n) extra space.

Proof. The value of θ is ω2k−i−1
for the duration of each

iteration through Steps 3–11. The for loops on Steps 4 and
6 compute P 〈f, θ〉 and P 〈g, θ〉, respectively. The DFTθ2 ’s of
these two polynomials are computed in place on Steps 8 and
9, with the results being permuted into the reverted binary
ordering. These are then multiplied in the loop at Step 10
so that before each iteration through Step 12, the sequence“

P 〈f · g, θ〉(θ2 revi j)
”

0≤j<2i

is stored in the sub-array C[2i..2i+1].

Algorithm SE_FFTMult.

Input: f, g ∈ R[x] stored in arrays A,B, k ∈ N such that
deg f + deg g < 2k, and ω ∈ R a 2k-PRU

Output: The coefficients of f · g stored in a length-2k

array C
1: θ ← ω
2: for i = k − 1, k − 2, . . . , 0 do
3: C[0..2i+1]← 0
4: for j = 0, 1, . . . , deg f do
5: C[j rem 2i]← C[j rem 2i] +A[j] · θj
6: for j = 0, 1, . . . , deg g do
7: C[2i + j rem 2i]← C[2i + j rem 2i] +B[j] · θj
8: InPlaceFFTθ2(C[0..2i])
9: InPlaceFFTθ2(C[2i..2i+1])

10: for j = 0, 1, . . . , 2i − 1 do
11: C[2i + j]← C[2i + j] · C[j]
12: θ ← θ2

13: C[0]← f(1) · g(1)
14: InPlaceFFTω−1(C[0..2k])
15: C[0..2k]← C[0..2k]/(2k ∈ R)

Therefore from Lemma 3.4, the polynomial f ·g evaluated
at each power of ω is stored in reverted binary order in the
array C after Step 13. The last two steps simply compute

f · g =
1

n
DFTω−1(DFTω(f · g)),

and therefore the algorithm is correct.
For the time complexity, Steps 13 and 15 each cost O(n)

and Step 14 is O(n logn). The loops on lines 4 and 6 each
cost O(n) at each iteration, for a total cost of O(nk) =
O(n logn). All other steps in the for loop from lines 2–12
are also O(n) except for the two calls to InPlaceFFT. These
cost O(i · 2i) at each iteration, for a total cost of O(n logn).

Finally, it is clear that no more than a constant amount
of extra space besides the array C is needed. Since |C| = 2k,
the stated result follows.

In particular, when the size of the output is a power of 2,
Theorem 3.5 tells us that the algorithm uses only a constant
amount of extra space, as promised.

4. IMPLEMENTATION
A preliminary implementation of the algorithms presented

above in the C language is available from the author’s web-
site at http://www.cs.uwaterloo.ca/~droche/. The cur-
rent implementation works for polynomials over a finite field
Fp, where p is a single-precision integer. For the FFT-based
multiplication method, we further require that the size of
the output is a power of 2, and that Fp contains a PRU of
that size, as mentioned above.

For benchmarking, we chose to compare with the popu-
lar C++ library NTL [14]. There are some more recently-
developed libraries which already claim imrpovement over
NTL, notably David Harvey’s zn_poly [9], but NTL seems
to be more widely used, at least at the moment. Further-
more, our aim here is not to claim the “fastest” implemen-
tation of polynomial arithmetic, but merely to demonstrate
that the space-efficient algorithms presented can be useful
in practice.

With that goal in mind, we should mention a few fun-
damental differences in our code versus NTL before stat-

Size Iterations NTL Karatsuba FFT-Based
64 100000 1.76 1.26 3.13

128 100000 5.22 3.85 7.01
256 100000 15.43 12.02 15.45
512 10000 4.59 3.75 3.45
210 10000 8.63 11.58 7.40
211 10000 18.51 35.48 16.15
212 1000 4.05 10.81 3.50
214 1000 24.54 — 16.67
216 100 19.03 — 7.70
218 10 8.21 — 3.58
220 10 33.49 — 15.99

Table 2: Benchmarks versus NTL

ing the results. First, we have a tighter restriction on the
largest modulus that can be used, so that some modular
reductions can be delayed in our algorithms. Second, NTL
is not thread-safe, and in fact pre-allocates and reuses the
“scratch space” for the multiplication algorithms. Finally,
NTL is compiled into a static library in C++, whereas we are
using direct compilation in C.

Table 2 shows the results of some benchmarking tests on
a relatively modest desktop machine with a 2.5 GHz 64-
bit Athalon processor, 256 KB L1 cache, 1 MB L2 cache,
and 2 GB RAM. Each line in the table gives the size of
each input polynomial to the multiplication, the number of
randomly-chosen product computations, the CPU time (in
seconds) for NTL multiplication, and finally the CPU time
for our new Karatsuba-like and FFT-based multiplication
algorithms, respectively. In our Karatsuba implementation,
we set the crossover to the classical method at size 32, and
we can see that the crossover from FFT to Karatsuba should
be somewhere around 512. In NTL, these crossover points
are 16 and 90, respectively.

To reiterate, the fundamental differences between our im-
plementation and NTL make these comparisons somewhat
meaningless, but these results are promising and seem to
suggest that our space-efficient algorithms might be useful
in practice. Of course, all of these benchmarks were per-
formed on sizes which are powers of 2, precisely the cases
where we expect our algorithms to gain the most advantage.
More implementation work remains before we can determine
in what cases (if any) our new routines are the best practical
choice.

5. CONCLUSIONS
We have shown two new methods for multiplication which

match existing “fast” algorithms in asymptotic time com-
plexity, but need considerably less auxiliary storage space
to compute the result. In particular, by breaking the tradi-
tional model and allowing multiple reads and writes into the
output space, we have demonstrated that the Ω(n2) time-
space tradeoff lower bound for multiplication can be im-
proved upon. Since this model is more realistic for modern
architectures, and in fact is already being used elsewhere,
our new algorithms may gain a practical advantage over ex-
isting approaches in some cases.

Much work remains to be done on this topic. First, while a
straightforward adaptation of the space-efficient Karatsuba
multiplication to the multiplication of multi-precision inte-

http://www.cs.uwaterloo.ca/~droche/

gers is not difficult, the extra challenges introduced by the
presence of carries, combined with the extreme efficiency
of existing libraries such as GMP [6], mean that an even
more careful implementation would be needed to gain an
advantage in this case. For instance, it would probably be
better to use a subtractive version of Karatsuba’s algorithm
to avoid some carries. This is also likely the area of great-
est potential utility of our new algorithms, as routines for
long integer multiplication are used in many different areas
of computing.

There are also some more theoretical questions left open
here. One direction for further research would be to see if
a scheme similar to the one presented here for Karatsuba-
like multiplication with low space requirements could also
be adapted to the Toom-Cook 3-way divide-and-conquer
method, or even their arbitrary k-way scheme. One might
also try to reduce the amount of extra space for Karatsuba
multiplication below O(logn), or to remove some of the re-
quirements of our FFT-based multiplication method that
uses O(1) extra space. Finally, a natural question is to ask
whether polynomial or long integer multiplication can be
done completely in-place — that is, transforming the in-
put to the output using only a constant amount of extra
space, such as what has been done for the FFT algorithm.
Even allowing an exponential time complexity, it is not clear
whether this is possible, nor is there any proof of its impos-
sibility of which the author is aware.

6. REFERENCES
[1] Karl Abrahamson. Time-space tradeoffs for branching

programs contrasted with those for straight-line
programs. Foundations of Computer Science, 1985.,
27th Annual Symposium on, pages 402–409, Oct. 1986.

[2] Richard Brent and Paul Zimmermann. Modern
computer arithmetic. Online:
http://www.loria.fr/~zimmerma/mca/mca-0.2.pdf,
June 2008. Version 0.2.

[3] David G. Cantor and Erich Kaltofen. On fast
multiplication of polynomials over arbitrary algebras.
Acta Inform., 28(7):693–701, 1991.

[4] Stephen A. Cook. On the Mininum Computation Time
of Functions. PhD thesis, Harvard University, 1966.

[5] James W. Cooley and John W. Tukey. An algorithm
for the machine calculation of complex Fourier series.
Math. Comp., 19:297–301, 1965.

[6] Torbjörn Granlund et. al. GNU Multiple Precision
Arithmetic Library. Online: http://gmplib.org/,
2008.

[7] Martin Fürer. Faster integer multiplication. In STOC
’07: Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 57–66, New
York, NY, USA, 2007. ACM Press.

[8] Joachim von zur Gathen and Jürgen Gerhard. Modern
computer algebra. Cambridge University Press,
Cambridge, second edition, 2003.

[9] David Harvey. zn poly: a library for polynomial
arithmetic. Online:
http://www.cims.nyu.edu/~harvey/zn_poly/, 2008.

[10] A. Karatsuba and Yu. Ofman. Multiplication of
multidigit numbers on automata. Dokl. Akad. Nauk
SSSR, 7:595–596, 1963.

[11] Roman Maeder. Storage allocation for the Karatsuba
integer multiplication algorithm, pages 59–65. 1993.

[12] Michael Monagan. In-place arithmetic for polynomials
over Zn, pages 22–34. 1993.

[13] A. Schönhage and V. Strassen. Schnelle Multiplikation
grosser Zahlen. Computing (Arch. Elektron. Rechnen),
7:281–292, 1971.

[14] Victor Shoup. NTL: A Library for doing Number
Theory. Online: http://www.shop.net/ntl/, 2008.

[15] Clive Temperton. Self-sorting in-place fast fourier
transforms. SIAM Journal on Scientific and Statistical
Computing, 12(4):808–823, 1991.

[16] Emmanuel Thomé. Karatsuba multiplication of
polynomials with temporary space of size ≤ n. Online:
http://www.loria.fr/~thome/publis/, September
2002.

[17] A. L. Toom. The complexity of a scheme of functional
elements realizing the multiplication of integers. Dokl.
Adad. Nauk. SSSR, 150(3):496–498, 1963.

[18] Joris van der Hoeven. The truncated Fourier
transform and applications. In ISSAC 2004, pages
290–296. ACM, New York, 2004.

http://www.loria.fr/~zimmerma/mca/mca-0.2.pdf
http://gmplib.org/
http://www.cims.nyu.edu/~harvey/zn_poly/
http://www.shop.net/ntl/
http://www.loria.fr/~thome/publis/

	1 Introduction
	1.1 Measuring Space Efficiency
	1.2 Overview

	2 Space-efficient Karatsuba multiplication
	2.1 Standard Karatsuba Algorithm
	2.2 Improved algorithm: general formulation
	2.3 Initial calls
	2.4 Unequal and odd-sized operands

	3 Space-efficient FFT-based multiplication
	3.1 Reverted binary ordering
	3.2 Folded polynomials
	3.3 Constant-space algorithm

	4 Implementation
	5 Conclusions
	6 References

