Fast Multiplication with Low Space Complexity

Daniel S. Roche

Symbolic Computation Group School of Computer Science University of Waterloo

Joint Mathematics Meetings Washington, D.C. 8 January 2009

A Fun Puzzle

Why care about space complexity?

- Physical restrictions on space; not on time
- Cache misses incur a significant penalty in modern architectures
- Specific applications (e.g. embedded devices)
- Theoretical interest

Multiplication Algorithms

(over \mathbb{Z} or R[x])

	Time Complexity	Space Complexity
Classical Method	$O(n^2)$	<i>O</i> (1)
Divide-and-Conquer Karatsuba/Ofman '63	$O(n^{\log_2 3})$ or $O(n^{1.59})$	O(n)
FFT-based Schönhage/Strassen '71 Cantor/Kaltofen '91	$O(n\log n\log\log n)$	O(n)

Multiplication Algorithms

(over \mathbb{Z} or R[x])

	Time Complexity	Space Complexity	
Classical Method	$O(n^2)$	<i>O</i> (1)	
Divide-and-Conquer Karatsuba/Ofman '63	$O(n^{\log_2 3})$ or $O(n^{1.59})$	O(n)	
FFT-based Schönhage/Strassen '71 Cantor/Kaltofen '91	$O(n\log n\log\log n)$	O(n)	
Time-Space Tradeoff: Product of time and space is $\Omega(n^2)$ (Savage & Swamy 1979; Abrahamson 1986)			

Standard Space Complexity Model (Papadimitriou)

3-Tape Turing Machine:

• Input tape (read-only)

9 1 1 2 × 7 2 6

• Work tape (read/write)

Size of this tape determines space complexity

4 · 2	•	1	8
-------	---	---	---

Output tape (write only)
 $\overline{ \cdot \cdot \cdot 5 | 3 | 1 | 2 }$

Significant improvements not possible in this model

Our Space Complexity Model

- 3-Tape Turing Machine:
 - Input tape (read-only)

9 1 1 2 × 7 2 6

• Work tape (read/write)

Size of this tape determines space complexity

4 · 2	•	1	8
-------	---	---	---

Output tape (read/write)

5 3 1 2

More realistic model for modern computers

Previous Work

- Monagan 1993: Importance of space efficiency for multiplication over Z_p[x]
- Maeder 1993: Bounds extra space for Karatsuba multiplication so that storage can be preallocated — about 2n extra memory cells required.
- Thomé 2002: Karatsuba multiplication for polynomials using *n* extra memory cells.
- Zimmerman & Brent 2008:

"The efficiency of an implementation of Karatsuba's algorithm depends heavily on memory usage."

Our Contributions

	Time Complexity	Space Complexity
Classical Method	$O(n^2)$	<i>O</i> (1)
Divide-and-Conquer Karatsuba/Ofman '63	$O(n^{\log_2 3})$ or $O(n^{1.59})$	$O(\log n)$
FFT-based Schönhage/Strassen '71 Cantor/Kaltofen '91	$O(n\log n\log\log n)$	$O(2^{\lceil \log_2 n \rceil} - n)$ (O(1) if $n = 2^k$)

Standard Karatsuba Algorithm

Initial Setup

Idea: Reduce one degree 2k multiplication to three of degree k. Input: $f, g \in R[x]$ each with degree less than 2k.

Write $f = f_0 + f_1 x^k$ and $g = g_0 + g_1 x^k$.

Standard Karatsuba Algorithm

Recursive Multiplications

Compute two sums: $f_0 + f_1$ and $g_0 + g_1$, and three intermediate products:

$$a = f_0 \cdot g_0$$
 $b = f_1 \cdot g_1$ $c = (f_0 + f_1) \cdot (g_0 + g_1)$

Standard Karatsuba Algorithm

Final Additions and Subtractions

Combine the computed products as follows:

$$a+(c - a - b) \cdot x^{k} + b \cdot x^{2k}$$

= $f_0g_0 + (f_0g_1 + f_1g_0) \cdot x^{k} + f_1g_1 \cdot x^{2k}$
= $f \cdot g$

Extra Requirements for Improved Karatsuba

Read-Only Input Space:

Read/Write Output Space:

(empty) (empty) (empty) (empty)
-------------------	----------------

To Compute: $f \cdot g$

Extra Requirements for Improved Karatsuba

• The low-order coefficients of the output are initialized as *h*, and the product *f* · *g* is added to this.

Read-Only Input Space:

f01 f11

Read/Write Output Space:

h0 h1 (empty) (emp	oty)
--------------------	------

g0

g1

To Compute: $f \cdot g + h$

Extra Requirements for Improved Karatsuba

- The low-order coefficients of the output are initialized as *h*, and the product *f* · *g* is added to this.
- The first polynomial f is given as a sum $f^{(0)} + f^{(1)}$.

Read-Only Input Space:

Read/Write Output Space:

h0 h1 (empty)	(empty)
---------------	---------

To Compute: $(f^{(0)} + f^{(1)}) \cdot g + h$

Step 1: Preparing to Multiply

Step 2: First product c

Step 3: Rearranging

Step 4: Second product a

Step 5: Rearranging

Step 6: Third product b

Step 7: Rearranging

Final Result

	с0			
a0	a1	c1		
h0	h1	b0	b1	
	a0	a1		
	b0	b1		

Analysis

- 3 recursive calls on degree-k arguments $\Rightarrow O(n^{\log_2 3})$ time complexity
- Constant extra space required at each recursive step ⇒ O(log n) space complexity
- At most 9*n*/2 additions at each recursive step (compared to 4*n* for naïve implementation)

First multiplication algorithm with $o(n^2)$ time × space

Initial Recursive Calls

Call the algorithm discussed above Algorithm A

Algorithm B

- Neither operand is given as a sum
- 7n/2 additions
- 2 recursive calls to B and one to A

Algorithm C

- Neither operand is given as a sum, and output is uninitialized
- 7n/2 additions
- 2 recursive calls to C and one to B

Algorithm *C* is the top-level call.

Implementation Details

With some slight modifications, we can handle:

- Odd-length operands
- 2 Different-length operands (Standard blocking method is used)

Proof-of-concept implementation in NTL

- $\approx 40\%$ slower than NTL Karatsuba
- Versions which destroy the input only $\approx 5\%$ slower
- NTL only allocates space once not thread-safe!
- Victor Shoup is a better programmer than me

Open Problems

- More efficient implementation for univariate polynomials
- Implementation over \mathbb{Z} (GMP)
- Similar results for Toom-Cook 3-way or k-way
- Better results for FFT-based multiplication
- Is completely in-place (overwriting input) possible?