
Fast Multiplication with Low Space Complexity

Daniel S. Roche

Symbolic Computation Group

School of Computer Science

University of Waterloo

Joint Mathematics Meetings

Washington, D.C.

8 January 2009



A Fun Puzzle



Why care about space complexity?

• Physical restrictions on space; not on time

• Cache misses incur a significant penalty

in modern architectures

• Specific applications (e.g. embedded devices)

• Theoretical interest



Multiplication Algorithms
(over Z or R[x])

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer

Karatsuba/Ofman ’63
O(nlog2 3) or O(n1.59) O(n)

FFT-based

Schönhage/Strassen ’71

Cantor/Kaltofen ’91

O(n log n log log n) O(n)



Multiplication Algorithms
(over Z or R[x])

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer

Karatsuba/Ofman ’63
O(nlog2 3) or O(n1.59) O(n)

FFT-based

Schönhage/Strassen ’71

Cantor/Kaltofen ’91

O(n log n log log n) O(n)

Time-Space Tradeoff: Product of time and space is Ω(n2)

(Savage & Swamy 1979; Abrahamson 1986)



Standard Space Complexity Model (Papadimitriou)

3-Tape Turing Machine:

• Input tape (read-only)

9 1 1 2 × 7 2 6

• Work tape (read/write)

Size of this tape determines space complexity

4 · 2 · 1 8

• Output tape (write only)

· · · 5 3 1 2

Significant improvements not possible in this model



Our Space Complexity Model

3-Tape Turing Machine:

• Input tape (read-only)

9 1 1 2 × 7 2 6

• Work tape (read/write)

Size of this tape determines space complexity

4 · 2 · 1 8

• Output tape (read/write)

· · · 5 3 1 2

More realistic model for modern computers



Previous Work

• Monagan 1993: Importance of space efficiency for

multiplication over Zp[x]

• Maeder 1993: Bounds extra space for Karatsuba

multiplication so that storage can be preallocated

— about 2n extra memory cells required.

• Thomé 2002: Karatsuba multiplication for polynomials

using n extra memory cells.

• Zimmerman & Brent 2008:

“The efficiency of an implementation of Karatsuba’s algorithm

depends heavily on memory usage.”



Our Contributions

Time Complexity Space Complexity

Classical Method O(n2) O(1)

Divide-and-Conquer

Karatsuba/Ofman ’63
O(nlog2 3) or O(n1.59) O(log n)

FFT-based

Schönhage/Strassen ’71

Cantor/Kaltofen ’91

O(n log n log log n)
O(2⌈log2 n⌉ − n)

(O(1) if n = 2k)



Standard Karatsuba Algorithm
Initial Setup

Idea: Reduce one degree-2k multiplication to three of degree k.

Input: f , g ∈ R[x] each with degree less than 2k.

Write f = f0 + f1xk and g = g0 + g1xk.

f0 f1 g0 g1



Standard Karatsuba Algorithm
Recursive Multiplications

Compute two sums: f0 + f1 and g0 + g1,

and three intermediate products:

a = f0 · g0 b = f1 · g1 c = (f0 + f1) · (g0 + g1)

f0 g0 a0 a1

f1 g1 b0 b1

f0

f1

g0

g1

c0 c1



Standard Karatsuba Algorithm
Final Additions and Subtractions

Combine the computed products as follows:

a+(c − a − b) · xk
+ b · x2k

= f0g0 + (f0g1 + f1g0) · xk
+ f1g1 · x

2k

= f · g

a0 a1 b0 b1

c0 c1

b0 b1

a0 a1



Extra Requirements for Improved Karatsuba

Read-Only Input Space:

f01 f11 g0 g1

Read/Write Output Space:

(empty) (empty) (empty) (empty)

To Compute: f · g



Extra Requirements for Improved Karatsuba

• The low-order coefficients of the output are initialized as h,

and the product f · g is added to this.

Read-Only Input Space:

f01 f11 g0 g1

Read/Write Output Space:

h0 h1 (empty) (empty)

To Compute: f · g + h



Extra Requirements for Improved Karatsuba

• The low-order coefficients of the output are initialized as h,

and the product f · g is added to this.

• The first polynomial f is given as a sum f (0)
+ f (1).

Read-Only Input Space:

f01 f11

f00 f10

g0 g1

Read/Write Output Space:

h0 h1 (empty) (empty)

To Compute: (f (0)
+ f (1)) · g + h



Space-Efficient Karatsuba Algorithm
Step 1: Preparing to Multiply

f01 f11

f00

g0 g1

h0 h1 (empty) (empty)

f10

f01 f11



Space-Efficient Karatsuba Algorithm
Step 2: First product c

f01 f11

f00 f10

g0 g1

h0 h1

h0

(empty) f00

f01

f10

f11

︷                                 ︸︸                                 ︷

+



Space-Efficient Karatsuba Algorithm
Step 3: Rearranging

f01 f11

f00 f10

g0 g1

h0 h1

h0

c0

c1 (empty)



Space-Efficient Karatsuba Algorithm
Step 4: Second product a

f01 f11

f00 f10

g0 g1

h0 (empty) c1 h0

h1

c0

c1

︷                                 ︸︸                                 ︷

+



Space-Efficient Karatsuba Algorithm
Step 5: Rearranging

f01 f11

f00 f10

g0 g1

a0

h0

a1 c1 h0

h1

c0

c1



Space-Efficient Karatsuba Algorithm
Step 6: Third product b

f01 f11

f00 f10

g0 g1

a0

h0

c0

h1

c1

a0

c1

a1

(empty)

︷                                 ︸︸                                 ︷

+



Space-Efficient Karatsuba Algorithm
Step 7: Rearranging

f01 f11

f00 f10

g0 g1

h0

a0

h1

c0

c1

a0

b0

c1

a1

b1



Space-Efficient Karatsuba Algorithm
Final Result

f01 f11

f00 f10

g0 g1

h0

a0

h1

a1

c0

a0

b0

b0

c1

a1

b1

b1



Analysis

• 3 recursive calls on degree-k arguments

⇒ O(nlog2 3) time complexity

• Constant extra space required at each recursive step

⇒ O(log n) space complexity

• At most 9n/2 additions at each recursive step

(compared to 4n for naı̈ve implementation)

First multiplication algorithm with o(n2) time × space



Initial Recursive Calls

Call the algorithm discussed above Algorithm A

Algorithm B

• Neither operand is given as a sum

• 7n/2 additions

• 2 recursive calls to B and one to A

Algorithm C

• Neither operand is given as a sum, and output is uninitialized

• 7n/2 additions

• 2 recursive calls to C and one to B

Algorithm C is the top-level call.



Implementation Details

With some slight modifications, we can handle:

1 Odd-length operands

2 Different-length operands (Standard blocking method is used)

Proof-of-concept implementation in NTL

• ≈ 40% slower than NTL Karatsuba

• Versions which destroy the input only ≈ 5% slower

• NTL only allocates space once — not thread-safe!

• Victor Shoup is a better programmer than me



Open Problems

• More efficient implementation

for univariate polynomials

• Implementation over Z (GMP)

• Similar results for

Toom-Cook 3-way or k-way

• Better results for

FFT-based multiplication

• Is completely in-place

(overwriting input) possible?


	Introduction
	Background
	Standard Karatsuba Algorithm
	Improved Karatsuba
	Analysis
	Conclusions

