
Adaptive Polynomial Multiplication∗

Daniel S. Roche
Symbolic Computation Group

University of Waterloo
www.cs.uwaterloo.ca/~droche

29 February 2008

Abstract

Finding the product of two polynomials is an essential
and basic problem in computer algebra. While most
previous results have focused on the worst-case com-
plexity, we instead employ the technique of adaptive
analysis to give an improvement in many “easy” cases
where other algorithms are doing too much work.
Three ideas for adaptive polynomial multiplication
are given. One method, which we call “chunky” mul-
tiplication, is given a more careful analysis, as well as
an implementation in NTL. We show that significant
improvements can be had over the fastest general-
purpose algorithms in many cases.

1 Introduction

Polynomial multiplication has been one of the most
well-studied topics in computer algebra and sym-
bolic computation over the last half-century, and has
proven to be one of the most crucial primitive oper-
ations in a computer algebra system. However, most
results have focused on the worst-case analysis, and
in doing so overlook many cases where polynomials
can be multiplied much more quickly. We develop
algorithms which are significantly faster than current
methods in many instances, and which are still never
(asymptotically) slower.

∗Submitted to Milestones in Computer Algebra
(MICA 2008), to be held May 1–3 in Stonehaven Bay,
Trinidad and Tobago

For univariate polynomials, multiplication algo-
rithms generally fall into one of two classes, depend-
ing on which representation is used. Let R be a ring,
and f ∈ R[x]. The dense representation of f is by a
vector of all coefficients in R, in order. If we denote
by n the degree of f , then the length of this vec-
tor will be exactly n + 1. The sparse representation
is a list of coefficient-exponent pairs in R× N sorted
by the exponents, where only the nonzero coefficients
are represented. If t is the number of nonzero terms
in f , and we assume constant storage for elements in
R, then an upper bound on the size of this represen-
tation is O(t log n). Unfortunately, this bound is not
always tight, for example when most terms have low
degree. A suitable lower bound is Ω(t log t + log n).

Advances in dense polynomial multiplication have
usually followed advances in long integer multipli-
cation, starting with the first sub-quadratic algo-
rithm by Karatsuba and Ofman in 1962 [7], followed
by the first superlinear algorithm by Schönhage and
Strassen in 1971 [11], which is based on the celebrated
Fast Fourier Transform (FFT) method [3].

Cantor and Kaltofen completed the important
work of extending FFT-based multiplication to poly-
nomials over arbitrary algebras in 1991 [2]. If we de-
note by M(n) the number of ring operations needed
to multiply two polynomials with degrees less than
n over R[x], they proved M(n) ∈ O(n log nloglogn).
Progress towards eliminating the log log n factor con-
tinues, with recent work (as usual, for multi-precision
integer multiplication) by Martin Fürer in 2007 [4].

Here we will usually assume M(n) ∈ O(n log n).

1

http://www.cs.uwaterloo.ca/~droche
http://www.orcca.on.ca/conferences/mica2008/

This is true for example if R contains a 2k-th primitive
root of unity for 2k ≥ n. Although this is not gen-
erally the case, ignoring the loglog factor will greatly
simplify our analysis. A lower bound of Ω(n log n) has
also been proven under a relatively reasonable model
[1]. So we will actually assume M(n) ∈ Θ(n log n).

To multiply two sparse polynomials with t nonzero
terms, the näıve algorithm requires O(t2) ring opera-
tions. In fact, this is optimal, since the product could
have that many terms. But for sparse polynomials,
we must also account for other word operations that
arise from the exponent arithmetic. Using “geobuck-
ets”, this can be reduced to O(t2 log t log n) [14]; more
recent results show how to reduce the space complex-
ity to achieve an even more efficient algorithm [9].

Sparse representations become very useful when
polynomials are in many variables, as the dense size
grows exponentially in the number of indeterminates.
In this case, others have noticed that the best over-
all approach may be to use a combination of sparse
and dense methods in what is called the recursive
dense representation [13]. Since most multivariate
algorithms boil down to univariate algorithms, we re-
strict ourselves here to polynomials over R[x]. Our
algorithms will easily extend to multivariate polyno-
mials, but the details of such adaptations are not
presented here.

Section 2 outlines the general idea behind adaptive
analysis, and how we will make use of this analysis for
polynomial multiplication. Next we present one idea
for adaptive multiplication, where the input polyno-
mials are split up into dense “chunks”. In Section 4,
we cover an implementation of this idea in the C++
library NTL. Two other ideas for adaptive multipli-
cation are put forth in Section 5. Finally, we discuss
the practical usefulness of our algorithms and future
directions for research.

2 Adaptive Analysis

By “adaptive”, we mean algorithms whose complex-
ity depends not only on the size of the input, but
also on some other measure of difficulty. This termi-
nology comes from the world of sorting algorithms,
and its first use is usually credited to Mehlhorn [8].

Adaptive algorithms for sorting will have complex-
ity dependent not only on the length of the list to
be sorted, but also to what extent the list is already
sorted. The results hold both theoretical interest and
practical importance (for a good overview of adaptive
sorting, see [10]).

In some sense, these algorithms identify “easy”
cases, and solve them more quickly than the general,
“difficult”, cases. Really, we are giving a finer par-
tition of the problem space, according to some mea-
sure of difficulty in addition to the usual size of the
input. We require that our algorithms never behave
worse than the usual ones, so that a normal worst-
case analysis would give the same results. However,
we also guarantee that easier cases be handled more
quickly (with “easiness” being defined according to
our chosen difficulty measure).

Adaptive analysis is not really new to computer al-
gebra, but it usually goes by some other name. For
instance, “early termination” strategies have proven
very useful in some linear algebra and polynomial
computations where bounds are not tight or not
known a-priori (see e.g. [6]). These algorithms essen-
tially recognize an intrinsic measure of difficulty and
perform better than the worst case when the problem
is easier to solve.

Some have observed at least a historical connection
between polynomial multiplication and sorting [5], so
it makes sense that our motivation comes from this
area. Of course, multiplying polynomials is not the
same as sorting, and we see right away that a dif-
ficulty measure as intrinsic as “the presortedness of
the input” will probably not be possible.

From the discussion above, however, an obvious
difficulty measure is the sparsity of the input poly-
nomials. This leads to a trivial adaptive algorithm:
(1) find the number of nonzero terms and determine
whether sparse or dense algorithms will be best, and
then (2) convert to that representation and perform
the multiplication. In fact, such an approach has
been suggested already to handle varying sparsity in
the intermediate computations of triangular decom-
positions.

2

2.1 Our Approach

The algorithms we present will always proceed in
three stages. First, the polynomials are read in and
converted to a different representation which effec-
tively captures the relevant measure of difficulty. Sec-
ond, we multiply the two polynomials in the alter-
nate representation. Finally, the product is converted
back to the original representation.

The reader will immediately notice that this is the
same as the general outline of FFT-based multiplica-
tion. However, our aim is somewhat opposite. For
FFT-based multiplication, computing the product in
the alternate representation is fast (linear time), and
the dominating cost comes from the cost of steps (1)
and (3) to convert to and from this representation.
But for our purposes, only step (2) will have com-
plexity dependent on the difficulty measure, and so
we want steps (1) and (3) to be as fast as possible,
which will usually mean linear time in the size of the
input.

For the methods we put forth, the second step is
relatively straightforward given the chosen represen-
tation. The final step will be even simpler, and it
will usually be possible to combine it with step (2)
for greater efficiency. The most challenging aspect
is designing an algorithm for the first step which is
linear time, as we are somehow trying to recognize
structure from chaos. This is also possible, but we
do sometimes sacrifice some efficiency of step (2) in
order to guarantee linear time for the first step.

Our adaptive algorithms will rely on fast dense
polynomial arithmetic, for which we require the fol-
lowing simple observation. If f, g ∈ R[x] with degrees
less than n and m respectively, and m ≤ n, then
the product fg can be computed with O(n

mM(m))
ring operations. (This is achieved by partitioning the
coefficient list of f into blocks of length m.) Using
our assumption that M(n) ∈ Θ(n log n), this becomes
O(n log m). To be even more concrete, we will say the
cost is bounded by cn log(m + 1) for some constant
c > 0. The (m + 1) adjustment is necessary to re-
flect the fact that multiplication when m = 1 (i.e.
multiplication by a scalar) is not free.

3 Chunky Multiplication

The idea here is simple, and provides a natural gra-
dient between the well-studied dense and sparse al-
gorithms for univariate polynomial arithmetic. For
f ∈ R[x] of degree n, we represent f as a sparse poly-
nomial with dense “chunks” as coefficients:

f = f1x
e1 + f2x

e2 + · · ·+ ftx
et , (1)

with each fi ∈ R[x] and ei ∈ N. Let d1, d2, . . . , dt ∈ N
be such that the degree of each fi is less than di. Then
we require ei+1 > ei +di for i = 1, 2, . . . , t−1, so that
there is some “gap” between each dense “chunk”. We
do not insist that each fi be completely dense, but
require only that the leading and constant coefficients
be nonzero. In fact, deciding how much space to allow
in each chunk is the challenge of converting to this
representation, as we will see.

Multiplying polynomials in the chunky represen-
tation uses sparse multiplication on the outer loop,
treating the fi’s as coefficients, and dense multipli-
cation to find each product figi. If we use a heap to
store pointers into the divisor as in [9], then chunks of
the result will be computed in order, so we can com-
bine chunks of the product that are close together,
and then convert back to the original representation
in linear time, as required.

3.1 Analysis

To analyze the complexity of the multiplication step,
we consider a somewhat degenerative case, where a
chunky polynomial f is multiplied by a completely
dense polynomial g (i.e. g has only one chunk).
Clearly multiplying by a chunky polynomial g instead
will just simplify to multiplying f by each of the dense
chunks, so we do not really lose any generality in this
assumption.

Theorem 3.1. Let f, g ∈ R[x] with f as in (1) and
g dense of degree m. Then the product fg can be
computed with

O

m log
∏

di≤m

(di + 1) + (log m)
∑

di>m

di

ring operations.

3

The proof is from our assumption that M(n) ∈
O(n log n), and therefore the cost of multiplying a
chunk fi of f by g is O(m log di) if m ≥ di and
O(di log m) otherwise.

The following two lemmas indicate what we must
minimize in order to be competitive with known tech-
niques for dense and sparse multiplication.

Lemma 3.2. If
∏

(di + 1) ∈ O(n), then the cost of
chunky multiplication is never asymptotically greater
than the cost of dense multiplication.

Proof. First, notice that
∑

di ≤ n (otherwise we
would have overlap in the chunks). And assume∏

(di + 1) ∈ O(n). From Theorem 3.1, the cost of
chunky multiplication is thus O(m log n + n log m).
But this is exactly the cost of dense multiplication,
from the assumption that M(n) ∈ Ω(n log n).

Lemma 3.3. Let s be the number of nonzero terms
in f . If

∑
di ∈ O(s), then the cost of chunky multi-

plication is never asymptotically greater than the cost
of sparse multiplication.

Proof. Assume g is totally dense. Then sparse mul-
tiplication of f times g costs O(sm) ring operations.
Now clearly t ≤ s, and note that

log
∏

(di + 1) =
∑

log(di + 1) ≤ t +
∑

di ∈ O(s).

Since log m ∈ O(m), this gives a total cost of O(sm)
ring operations from Theorem 3.1. The cost of expo-
nent arithmetic will be O(mt log t log n), which is less
than the O(ms log s log n) for the sparse algorithm as
well.

It is easy to generate examples showing that these
bounds are tight. Unfortunately, this means that
there are instances where a single chunky represen-
tation will not always result in better performance
than the dense and sparse algorithms. One such ex-
ample is when f has

√
n nonzero terms spaced equally

apart. Therefore we consider two separate cases for
converting to the chunky representation, depending
on the representation of the input. When the input
is dense, we seek to minimize

∏
(di + 1), and when it

is sparse, we seek to minimize
∑

di (to some extent).

3.2 Conversion from Sparse

Converting from the sparse representation is some-
what simpler, so we consider this case first. Lemma
3.3 indicates that minimizing the sum of the degrees
of the chunks will guarantee competitive performance
with the sparse algorithm. But the minimal value of∑

di is actually achieved when we make every chunk
completely dense, with no spaces within any dense
chunk. While this approach will always be at least as
fast as sparse multiplication, it will usually be more
efficient to allow some spaces in the chunks if we are
multiplying f by a dense polynomial g of any degree
larger than 1.

One way to balance these concerns would be to
look at both f and g (the two operands to the multi-
plication), and choose the size of the chunks of f and
g simultaneously (somehow). However, we prefer to
convert polynomials to the chunky representation in-
dependently, for a few reasons: it will simplify the
algorithms considerably, allowing for more efficiency
in the conversion step, and it will make the compu-
tation of some chain of multiplications (rather than
just one at a time) much faster, since we will avoid
converting between representations except at the be-
ginning and the end of the computation.

Our approach to balancing the need to minimize∑
di and to allow some spaces into the chunks will

be the use of a slack variable, which we call ω. Really
this is just the constant hidden in the big-O notation
when we say

∑
di should be O(s) as in Lemma 3.3.

The algorithm to convert a single polynomial from
the sparse to the chunky representation is given be-
low.

We start by inserting every possible gap between
totally dense chunks (in order) into a doubly-linked
heap. This is a doubly-linked list embedded in an
array-based max-heap, so that each gap in the heap
has a pointer to the locations of adjacent gaps.

The key for the max-heap will be a score we assign
to each gap. This score will be the ratio between the
value of

∏
(di+1) with and without the gap included,

raised to the power (1/r), where r is the length of
the gap. So high “scores” indicate an improvement
in the value of

∏
(di + 1) will be achieved if the gap

is included, and not too much extra space will be

4

Algorithm SparseToChunky

Input: f ∈ R[x] in the sparse representation, and
slack variable ω ≥ 1

Output: Chunky representation of f
with

∑
di ≤ ωs.

1: r ← s
2: H ← doubly-linked heap with all possible gaps

from f and corresponding scores
3: while r ≤ ωs do
4: Extract gap with highest score from heap
5: Remove gap from chunky representation, up-

date neighboring scores, and add size of gap to
r

6: end while
7: Put back in the most recently removed gap
8: return Chunky representation with all gaps

which still appear in H

introduced.
We then continually remove the gap with the high-

est score from the top of the heap, “fill in” that
gap in our representation (by combining the chunks
surrounding it into a single chunk), and update the
scores of the adjacent gaps. Since we have a doubly-
linked heap, and since there can’t possibly be more
gaps than the number of terms, all this can be ac-
complished with O(s) word operations at each step.
There can be at most s steps, for a total cost of
O(s log s), which is linear in the size of the input from
the lower bound on the size of the sparse representa-
tion. So we have the following:

Theorem 3.4. Algorithm SparseToChunky returns
a chunky representation satisfying

∑
di ≤ ωs and

runs in O(s log s) time, where s is the number of
nonzero terms in the input polynomial.

3.3 Conversion from Dense

Converting from the dense to the chunky representa-
tion is more tricky. This is due in part to that fact
that, unlike with the previous case, the trivial conver-
sion does not give a minimum value for the function
we want to minimize, which in this case is

∏
(di +1).

As a result, the algorithm here is a bit more compli-

cated, and we do not give a complete proof.
Let S1, S2, . . . , Sk denote gaps of zeroes between

dense chunks in the target representation, ordered
from left to right. The algorithm is based on the
predicate function P (S1, S2, . . . , Sk), which we de-
fine to be true iff inserting all gaps S1, . . . , Sk into
the chunky representation gives a smaller value for∏

(di +1) than just inserting the single gap Sk. Since
these gaps are in order, we can evaluate this predi-
cate by simply comparing the products of the sizes of
the chunks formed between S1, . . . , Sk and the length
of the single chunk formed to the left of Sk.

Our algorithm is given below. We maintain a stack
of gaps S1, . . . , Sk satisfying P (S1, . . . , Si) is true for
all 2 ≤ i ≤ k. This stack is updated as we move
through the array from left to right in a single pass;
those gaps remaining at the end of the algorithm are
exactly the ones returned in the representation.

Algorithm DenseToChunky

Input: f ∈ R[x] in the dense representation
Output: A chunky representation for f satisfying∏

(di + 1) ∈ O(n)
1: G← stack of gaps, initially empty
2: i← 0
3: for each gap S in f , moving left to right do
4: k ← |S|
5: while P (S1, . . . , Sk, S) 6= true do
6: Pop Sk from G and decrement k
7: end while
8: Push S onto G
9: end for

10: return Chunky representation only with gaps
remaining in G

Theorem 3.5. Algorithm DenseToChunky always re-
turns a representation containing the maximal num-
ber of gaps and satisfying

∏
(di + 1) ≤ n and runs in

O(n) time, where the degree of the input is less than
n.

Proof. For the correctness, we first observe that
P (S1, . . . , Sk, S`) is true only if P (S1, . . . , Sk, S`′) is
true for all `′ ≤ `. Then a simple inductive argu-
ment tells us that, the first time we encounter the

5

gap Si and add it to the stack, the stack is trimmed
to contain the maximal number of gaps seen so far
which do not increase

∏
(di+1). When we return, we

have encountered the last gap St which of course is
required to exist in the returned representation since
no nonzero terms come after it. Therefore, from the
definition of P , inserting all the gaps we return at the
end gives a smaller value for

∏
(di +1) than using no

gaps.
The complexity comes from the fact that we push

or pop onto G at every iteration through either while
loop. Since we only make one pass through the poly-
nomial, each gap can only be pushed and popped onto
the stack at most once. Therefore the total number if
iterations is linear in the number of gaps, which can
never be more than n/2.

To make each calculation of P (S1, . . . , Sk, S) run in
constant time, we will just need to save the calculated
value of

∏
(di + 1) at each time a new gap is pushed

onto the stack. This means the next product can be
calculated with a single multiplication rather than k
of them. Also note that the product of degrees stays
bounded by n, so intermediate products do not grow
too large.

The only component missing here is a slack variable
ω. For a practical implementation, the requirement
that

∏
(di + 1) ≤ n is too strict, resulting in slower

performance. So, as in the previous section, we will
only require

∑
log(di + 1) ≤ ω log n, which means

that
∏

(di + 1) ≤ nω, for some positive constant ω.
This changes the definition and computation of the
predicate function P slightly, but otherwise does not
affect the algorithm.

4 Implementation

A complete implementation of adaptive chunky mul-
tiplication of dense polynomials has been produced
using Victor Shoup’s C++ library NTL [12], and
is available for download from the author’s website.
This is an ideal medium for implementation, as our
algorithms rely heavily on dense polynomial arith-
metic being as fast as possible, and NTL implements
asymptotically fast algorithms for dense univariate

polynomial arithmetic, and in fact is often cited as
containing some of the fastest such implementations.

Although the algorithms we have described work
over an arbitrary ring R, recall that in our analysis we
have made a number of assumptions about R: Ring
elements use constant storage, ring operations have
unit cost, and the multiplication of degree-n polyno-
mials over R can be performed with O(n log n) ring
operations. To give the best reflection of our analy-
sis, our tests were performed in a ring which makes all
these assumptions true: Zp, where p is a word-sized
“FFT prime” which has a high power of 2 dividing
p− 1.

As in any practical implementation, especially one
that hopes to ever be competitive with a highly-tuned
library such as NTL, we employed a number of sub-
tle “tricks”, mostly involving attempts to keep mem-
ory access low by performing computations in-place
whenever possible. We also had to implement the ob-
vious algorithm to multiply a high-degree polynomial
by a low-degree one as discussed at the end of Section
2, since (surprisingly) NTL apparently does not have
this built-in. However, the relatively low crossover
points of our algorithms, as shown below, indicates
that more fine tuning is probably necessary to make
them practical.

For the tests, we fixed the degree at 10 000 and
randomly inserted small chunks into the polynomial.
Each chunk has degree around 10 and tests were per-
formed with 1 to 300 such chunks. We compared
NTL’s default multiplication method, which will al-
ways use FFT multiplication when the degree is this
high, to our chunky multiplication method as de-
scribed above. We also compared different strate-
gies for converting the input: the näıve method of
simply choosing every possible gap, and Algorithm
DenseToChunky, with a few different choices for the
slack variable ω. The results are presented in Fig-
ure 1.

We observe that the näıve conversion is best for
very sparse and “friendly” polynomials, but the cost
is growing very quickly. Also, increasing the slack
variable makes algorithm DenseToChunky run faster
for a while, but the ultimate ratio between it and the
dense method will be greater.

6

http://www.cs.uwaterloo.ca/~droche/research.html

Figure 1: Timing comparisons for Chunky Multipli-
cation

5 Other Ideas for Adaptive
Multiplication

5.1 Equally-Spaced Terms

Suppose many of the terms on a polynomial f ∈ R[x]
are spaced equally apart. If the length of this com-
mon distance is k, then we can write f(x) as fD(xk),
where fD ∈ R[x] is dense with degree less than n/k.
Now say we want to multiply f by another polyno-
mial g ∈ R[x], where deg g < m, and without loss
of generality assume m ≤ n. Then similarly write
g(x) = gD(x`). If k = `, then to find the product of f
and g, we just compute hD = fDgD and write f · g =
hD(xk). The total cost is only O((n/m)M(m/k)),
which by our assumption is O((n/k) log(m/k)).

If k 6= `, the algorithm is a bit more complicated,
but we still get a significant improvement. Let r and
s be the greatest common divisor and least common
multiple of k and `, respectively. Split f into `/r
polynomials, each with degree less than n/s, as fol-
lows:

f(x) = f0(xs) + f1(xs) · xk + · · ·+ fl/r−1(xs) · xs−k.

Similarly, split g into k/r polynomials
g0, g1, . . . , gs/k−1, each with degree less than
m/s. Then to multiply f by g, we compute all
products figj , then multiply by powers of x and
sum to obtain the final result. The total complexity
in this more general case, assuming again that
M(n) ∈ O(log n), is O((n/r) log(m/s)). So even
when k and ` are relatively prime, we still perform
the multiplication faster than any dense method.

As usual, identifying the best way to convert an ar-
bitrary polynomial into this representation will be the
most challenging step algorithmically. We will actu-
ally want to write f as fD(xk) + fS , where fS ∈ R[x]
is sparse with very few nonzero terms, representing
the “noise” in the input. To determine k, we must
find the gcd of “most” of the exponents of nonzero
coefficients in f , which is a nontrivial problem when
we are restricted by the requirement of linear-time
complexity. We will not go into further detail here.

5.2 Coefficients in Sequence

This technique is best explained by first considering
an example. Let R = Z, f = 1 + 2x + 3x2 + · · · +
nxn−1, and g = b0 + b1x + · · · + bn−1x

n−1, where
b0, b1 . . . , bm−1 are arbitrary integers. Let h = fg
be the product that we want to compute. Then the
first n coefficients of h (starting with the constant
coefficient) are b0, (2b0 + b1), (3b0 + 2b1 + b2), We
can compute these in linear time by initializing an
accumulator with b0, and for i = 1, 2, . . . , n − 1, we
compute the coefficient of xi by adding bi to the ac-
cumulator, and adding the accumulator to the value
of the previous coefficient. The high-order terms can
be constructed in the same way.

So we have a method to compute fg in linear
time for any g ∈ R[x]. In fact, this can be general-
ized to the case where the coefficients of f form any
arithmetic-geometric sequence. That is, f = a0 +
a1x + · · · and there exist constants c1, c2, c3, c4 ∈ R
such that ai = c1 + c2i + c3c

i
4 for all i. The num-

ber of such sequences will be exponential in the size
of the ring R, so many polynomials will fit into this
category.

Now note that, if we wish to multiply f, g ∈ R[x],
only one of the two input polynomials needs to have

7

sequential coefficients in order to compute the prod-
uct in linear time. To recognize whether this is the
case, we start with the list of coefficients, which will
be of the form (c1 + c2i + c3c

i
4)i≥0 if the polynomial

satisfies our desired property. We compute succes-
sive differences to obtain the list (c2+c3(c4−1)ci

4)i≥0.
Computing successive differences once more and then
successive quotients will produce a list of all c4’s if the
coefficients form an arithmetic-geometric sequence as
above. We can then easily find c1, c2, c3 as well.

In practice, we will again want to allow for some
“noise”, so we will actually write f =

∑
(c1 + c2i +

c3c
i
4)x

i + fS , for some very sparse polynomial fS ∈
R[x]. The resulting computational cost for multipli-
cation will be only O(n) plus a term depending on
the size of fS .

6 Conclusions

We have seen some approaches to multiplying poly-
nomials in such a way that we handle “easier” cases
more efficiently, for various notions of easiness. These
algorithms have the same worst-case complexity as
the best known methods, but will be much faster if
the input has certain structure.

However, our preliminary implementation seems to
indicate that the input polynomials must be very
structured in order to obtain a practical benefit.
Adaptive sorting algorithms have encountered the
same difficulty, and those algorithms have come into
wide use only because almost-sorted input arises nat-
urally in many situations. To bring what may cur-
rently be interesting theoretical results to very practi-
cal importance, we will need to more carefully investi-
gate the properties of high-degree polynomials which
people actually want to multiply, and see if they often
contain any structure which we could exploit. Per-
haps concentrating only on certain domains, such as
very small finite fields, could also provide more easy
cases for adaptive algorithms.

There is much other future work as well in working
out the details of all the approaches put forth here. In
fact, some combination of the three approaches could
lead to better results on real input. In addition, it
would be interesting to compare adaptive multiplica-

tion performance in the case of sparse polynomials,
where the contrast between the fast dense methods
we use here and the standard sparse methods might
be more striking.

References

[1] Peter Bürgisser and Martin Lotz. Lower bounds
on the bounded coefficient complexity of bilinear
maps. J. ACM, 51(3):464–482 (electronic), 2004.

[2] David G. Cantor and Erich Kaltofen. On fast
multiplication of polynomials over arbitrary al-
gebras. Acta Inform., 28(7):693–701, 1991.

[3] James W. Cooley and John W. Tukey. An al-
gorithm for the machine calculation of complex
Fourier series. Math. Comp., 19:297–301, 1965.

[4] Martin Fürer. Faster integer multiplication.
pages 57–66, 2007.

[5] Joachim von zur Gathen and Jürgen Gerhard.
Modern computer algebra. Cambridge University
Press, Cambridge, second edition, 2003.

[6] Erich Kaltofen and Wen-shin Lee. Early ter-
mination in sparse interpolation algorithms. J.
Symbolic Comput., 36(3-4):365–400, 2003. Inter-
national Symposium on Symbolic and Algebraic
Computation (ISSAC’2002) (Lille).

[7] A. Karatsuba and Yu. Ofman. Multiplication of
multidigit numbers on automata. Dokl. Akad.
Nauk SSSR, 7:595–596, 1963.

[8] Kurt Mehlhorn. Data structures and algorithms.
1. EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, Berlin, 1984.
Sorting and searching.

[9] Michael B. Monagan and Roman Pearce. Poly-
nomial division using dynamic arrays, heaps,
and packed exponent vectors. In CASC, pages
295–315, 2007.

[10] Ola Petersson and Alistair Moffat. A frame-
work for adaptive sorting. Discrete Appl. Math.,
59(2):153–179, 1995.

8

[11] A. Schönhage and V. Strassen. Schnelle Multip-
likation grosser Zahlen. Computing (Arch. Elek-
tron. Rechnen), 7:281–292, 1971.

[12] Victor Shoup. NTL: A Library for doing Number
Theory. Online, http://www.shoup.net/ntl/,
2007.

[13] David R. Stoutemeyer. Which polynomial rep-
resentation is best? In Proc. 1984 MACSYMA
Users’ Conference, pages 221–244, Schenectady,
NY, 1984.

[14] Thomas Yan. The geobucket data structure for
polynomials. J. Symbolic Comput., 25(3):285–
293, 1998.

9

	Introduction
	Adaptive Analysis
	Our Approach

	Chunky Multiplication
	Analysis
	Conversion from Sparse
	Conversion from Dense

	Implementation
	Other Ideas for Adaptive Multiplication
	Equally-Spaced Terms
	Coefficients in Sequence

	Conclusions

