Order Statistics

We often want to compute a median of a list of values.
(It gives a more accurate picture than the average sometimes.)

More generally, what element has position k in the sorted list?
(For example, for percentiles or trimmed means.)

Selection Problem

Given a list A of size n, and an integer k,
what element is at position k in the sorted list?

CS 355 (USNA) Unit 5 Spring 2012 1/ 39

Sorting-Based Solutions

o First idea: Sort, then look-up

o Second idea: Cut-off selection sort

CS 355 (USNA) Unit 5 Spring 2012 2 /39

Heap-Based Solutions

o First idea: Use a size-k max-heap

o Second idea: Use a size-n min-heap

CS 355 (USNA) Unit 5

Spring 2012 3/39

Algorithm Design

What algorithm design paradigms could we use to attack the selection

problem?

o Reduction to known problem
What we just did!

o Memoization/Dynamic Programming
Would need a recursive algorithm first. . .

o Divide and Conquer
Like binary search — seems promising. What's the problem?

€S 355 (USNA) Unit 5 Spring 2012 4 /39
A better “divide”
o Finding the element at a given position is tough.
o But find the position of a given element is easy!
Idea: Pick an element (the pivot), and sort around it.
CS 355 (USNA) Unit 5 Spring 2012 5/39
partition(A)
Input: Array A of size n. Pivot is in A[0].
Output: Index p such that A[p] holds the pivot, and
Ala]l < Alp] < Alp] forall 0 <a<p< b<n.
1 i =1
2 j :=n -1
3 while i <= j do
4 if A[i]l] <= A [0] then
5 i =1 + 1
6 else if A[j]l > A[0] then
7 joi= 3 -1
8 else
9 swap (A[il, A[;DD
10 end while
11 swap (A[O0], A[jl)
12 return j
CS 355 (USNA) Unit 5 Spring 2012 6 /39

Analysis of partition

o Loop Invariant: Everything before A[i] is < the pivot;
everything after A[j] is greater than the pivot.

o Running time: Consider the value of j — .

€S 355 (USNA) Unit 5 Spring 2012 7 /39
Choosing a Pivot
The choice of pivot is really important!
o Want the partitions to be close to the same size.
o What would be the very best choice?
Initial (dumb) idea: Just pick the first element:
choosePivot1(A)
Input: Array A of length n
Output: Index of the pivot element we want
1 return O
CS 355 (USNA) Unit 5 Spring 2012 8/39

The Algorithm

quickSelectl(A,k)

Input: Array A of length n, and integer k
Output: Element at position k in the sorted array

1 swap (A[O0], A[choosePivotl1(A)])

2 p := partition(A)

3 if p = k then

4 return A[p]

5 else if p < k then

6 return quickSelectl(A[p+1..n-1], k-p-1)
7 else if p > k then

8 return quickSelect1(A[O0..p-1]1, k)

CS 355 (USNA) Unit 5 Spring 2012

9/ 39

QuickSelect: Initial Analysis

o Best case:

o Worst case:

CS 355 (USNA) Unit 5

Spring 2012 10 / 39
Average-case analysis
Assume all n! permutations are equally likely.
Average cost is sum of costs for all permutations, divided by n!.
Define T(n, k) as average cost of quickSelect1(A,k):
1 k—1 n—1
T(nk)=n+- Y T(n—p-Lk—p—1)+ > T(p,k)
p=0 p=k+1

See the book for a precise analysis, or. ..

CS 355 (USNA) Unit 5 Spring 2012 11 /39

Average-Case of quickSelectl

First simplification: define T(n) = maxx T(n, k)
The key to the cost is the position of the pivot.

There are n possibilities, but can be grouped into:

o Good pivots: The position p is between n/4 and 3n/4.
Size of recursive call:

o Bad pivots: Position p is less than n/4 or greater than 3n/4
Size of recursive call:

Each possibility occurs % of the time.

CS 355 (USNA) Unit 5 Spring 2012

12 /39

Average-Case of quickSelectl

Based on the cost and the probability of each possibility, we have:

T(n) < n+%T (%) +%T(n)

(Assumption: every permutation in each partition is also equally likely.)

CS 355 (USNA) Unit 5 Spring 2012 13/ 39

Drawbacks of Average-Case Analysis

To get the average-case we had to make some BIG assumptions:
o Every permutation of the input is equally likely
o Every permutation of each half of the partition is still equally likely

The first assumption is actually false in most applications!

CS 355 (USNA) Unit 5 Spring 2012 14 / 39

Randomized algorithms

Randomized algorithms use a source of random numbers
in addition to the given input.

AMAZINGLY, this makes some things faster!
Idea: Shift assumptions on the input distribution

to assumptions on the random number distribution.
(Why is this better?)

Specifically, assume the function random(n) returns an integer between
0 and n-1 with uniform probability.

CS 355 (USNA) Unit 5 Spring 2012 15 / 39

Randomized quickSelect

We could shuffle the whole array into a randomized ordering, or:

@ Choose the pivot element randomly:

choosePivot2(A)

1 return random(n)

@ Incorporate this into the quickSelect algorithm:

quickSelect2(A)

1 swap (A[0], AlchoosePivot2(A)])
2

CS 355 (USNA) Unit 5 Spring 2012

16 / 39

Analysis of quickSelect?2

The expected cost of a randomized algorithm is the probability of each

possibility, times the cost given that possibility.
We will focus on the expected worst-case running time.

Two cases: good pivot or bad pivot. Each occurs half of the time. ..
The analysis is exactly the same as the average case!

Expected worst-case cost of quickSelect?2 is ©(n).
Why is this better than average-case?

CS 355 (USNA) Unit 5 Spring 2012

17 /39

Do we need randomization?

Can we do selection in linear time without randomization?
Blum, Floyd, Pratt, Rivest, and Tarjan figured it out in 1973.

But it's going to get a little complicated. ..

CS 355 (USNA) Unit 5 Spring 2012

18/ 39

Median of Medians

Idea: Develop a divide-and-conquer algorithm for choosing the pivot.

@ Split the input into m sub-arrays

@ Find the median of each sub-array

@ Look at just the m medians, and take the median of those
@ Use the median of medians as the pivot

This algorithm will be mutually recursive with the selection algorithm.
Crazy!

CS 355 (USNA) Unit 5 Spring 2012 19 / 39

Note:
o q is a parameter, not part of the input. We'll figure it out next.

o quickSelect3(A,k) finds the element at position k in the sorted
array and re-arranges A so that A[k] is that element.

choosePivot3(A)

1 m := floor(n/q)

2 for i from 0 to m-1 do

3 // Find median of next group, move to front

4 quickSelect3 (A[i*q..(i+1)*qg-1], floor(q/2))
5 swap (A[i], A[i*xq + floor(q/2)1)

6 end for

7 // Find the median of medians

8 quickSelect3(A[0..m-1], floor(m/2))

9 return floor(m/2)

CS 355 (USNA) Unit 5 Spring 2012 20 / 39

Worst case of choosePivot3(A)

Assume all array elements are distinct.

Question: How unbalanced can the pivoting be?

o Chosen pivot must be greater than |m/2| medians.
o Each median must be greater than |g/2| elements.

o Since m = |n/q], the pivot must be greater than (and less than)

appl OXil ately
n q

elements in the worst case.

CS 355 (USNA) Unit 5 Spring 2012 21/ 39

Worst-case example, g = 3

A =113,25,18,76,39,51,53,41,96,5,19,72,20,63, 11]

CS 355 (USNA) Unit 5 Spring 2012 22/ 39

Aside: “At Least Linear”

Definition
A function f(n) is at least linear if and only if f(n)/n is non-decreasing
(for sufficiently large n).

o Any function that is ©(n°(log n)) with ¢ > 1 is “at least linear".

o You can pretty much assume that any running time that is Q(n) is
“at least linear”.

o Important consequence: If T(n) is at least linear, then
T(m)+ T(n) < T(m+ n) for any positive-valued variables n and m.

CS 355 (USNA) Unit 5 Spring 2012 23 /39

Analysis of quickSelect3

Since quickSelect3 and choosePivot3 are mutually recursive, we
have to analyze them together.

o Let T(n) = worst-case cost of quickSelect3(4A,k)

o Let S(n) = worst-case cost of selectPivot3(A)
o T(n)=
o S(n) =

o Combining these, T(n) =

CS 355 (USNA) Unit 5 Spring 2012 24 / 39

Choosing g
o What if g is big? Try g = n/3.

o What if g is small? Try g = 3.

€S 355 (USNA) Unit 5 Spring 2012 25 / 39
Choosing g
What about g =57
CS 355 (USNA) Unit 5 Spring 2012 26 / 39
QuickSort

QuickSelect is based on a sorting method developed by Hoare in 1960:

quickSort1(A)

Input: Array A of size n
Output: The array is sorted in-place.

1 if n > 1 then

2 swap (A[O0], A[lchoosePivot1(A)])
3 p := partition(A)

4 quickSort1 (A[O0..p-1]1)

5 quickSortl1 (A[p+1..n-1])

6 end if

CS 355 (USNA) Unit 5 Spring 2012

27 /39

QuickSort vs QuickSelect

©

chosen.

©

Crucial difference: QuickSort makes two recursive calls

©

Best-case analysis:

o Worst-case analysis:

(+]

We could ensure the best case by using quickSelect3 for the
pivoting.
In practice, this is too slow.

Again, there will be three versions depending on how the pivots are

€S 355 (USNA) Unit 5 Spring 2012 28/ 39
Average-case analysis of quickSort1
Of all n! permutations, (n — 1)! have pivot A[0] at a given position i.
Average cost over all permutations:
1 n—1
T(n)==-> (T(+T(n—i—1)+6(n), nx>2
Nz
Do you want to solve this directly?
Instead, consider the average depth of the recursion.
Since the cost at each level is ©(n), this is all we need.
CS 355 (USNA) Unit 5 Spring 2012 29 /39

Average depth of recursion for quickSort1

D(n) = average recursion depth for size-n inputs.

0, n<l1
)= { Vs s man (0, M - 1), 022

o We will get a good pivot (n/4 < p < 3n/4) with probability 3

o The larger recursive call will determine the height (i.e., be the “max”)

with probability at least %

CS 355 (USNA) Unit 5 Spring 2012

30/ 39

Summary of QuickSort analysis

o quickSort1: Choose A[0] as the pivot.
» Worst-case: ©(n?)
» Average case: ©(nlog n)

o quickSort2: Choose the pivot randomly.
» Worst-case: ©(n?)
» Expected case: ©(nlogn)

o quickSort3: Use the median of medians to choose pivots.
» Worst-case: ©(nlogn)

€S 355 (USNA) Unit 5 Spring 2012 31 /39
Sorting so far
We have seen:
o Quadratic-time algorithms:
BubbleSort, SelectionSort, InsertionSort
o nlog n-time algorithms:
HeapSort, MergeSort, QuickSort
O(nlog n) is asymptotically optimal in the comparison model.
So how could we do better?
CS 355 (USNA) Unit 5 Spring 2012 32/39
BucketSort

BucketSort is a general approach, not a specific algorithm:

@ Split the range of outputs into k groups or buckets
@ Go through the array, put each element into its bucket
@ Sort the elements in each bucket (perhaps recursively)

@ Dump sorted buckets out, in order

Notice: No comparisons!

CS 355 (USNA) Unit 5 Spring 2012

33/39

countingSort (A,k)
Input: Integer array A of length n, and integer k such that every A[i]
satisfies 0 < A[i] < k.
Output: A gets sorted.

1 C := new array of size k

2 for i from 0 to k do

3 cl[i] := 0

4 for i from 0 to n-1 do

5 C[A[il] := CILA[ill + 1

6 for i from 1 to k-1 do

7 C[i] := C[il + C[i-1]

8 B := copy(A)

9 for i from n-1 down to 0 do

10 c[B[il]l := c[B[i]] - 1

11 A[c[B[i]11] := BIil

12 end for

€S 355 (USNA) Unit 5 Spring 2012 34 / 39

Analysis of CountingSort

o Time:

o Space:

CS 355 (USNA) Unit 5 Spring 2012 35 / 39

Stable Sorting

Definition
A sorting algorithm is stable if elements with the same key stay in the
same order.

o Quadratic algorithms and MergeSort are easily made stable
o QuickSort will require extra space to do stable partition.

o CountingSort is stable.

CS 355 (USNA) Unit 5 Spring 2012 36 / 39

radixSort(A,d,B)

Input: Integer array A of length n, and integer d and k such that every
Al[f] has d digits A[i] = x4—1X4—2 - - - X0, to the base B.

Output: A gets sorted.

1 for i from 0 to d-1 do
2 // Sort by the x;'s
3 countingSort (A,B) Dby every Xx;

Works because CountingSort is stable!

Analysis:

€S 355 (USNA) Unit 5 Spring 2012 37 / 39

Summary of Sorting Algorithms

Every algorithm has its place and purpose!

Algorithm Analysis In-place? | Stable?
SelectionSort ©(n?) best and worst yes yes
InsertionSort ©(n) best, ©(n?) worst yes yes
HeapSort ©(nlog n) best and worst yes no
MergeSort ©(nlog n) best and worst no yes
QuickSort O(nlog n) best, ©(n?) worst yes no
CountingSort | ©(n+ k) best and worst no yes
RadixSort ©(d(n+ k)) best and worst yes yes
CS 355 (USNA) Unit 5 Spring 2012 38 /39

Unit 5 Summary

o Selection problem

o Partition

o quickSelect and quickSort

o Average-case analysis

o Randomized algorithms and analysis
o Median of medians

o Non-comparison based sorting

o BucketSort, CountingSort, RadixSort
o Stable sorting

CS 355 (USNA) Unit 5 Spring 2012 39 / 39

