
Order Statistics

We often want to compute a median of a list of values.
(It gives a more accurate picture than the average sometimes.)

More generally, what element has position k in the sorted list?
(For example, for percentiles or trimmed means.)

Selection Problem

Given a list A of size n, and an integer k ,
what element is at position k in the sorted list?

CS 355 (USNA) Unit 5 Spring 2012 1 / 39

Sorting-Based Solutions

First idea: Sort, then look-up

Second idea: Cut-off selection sort

CS 355 (USNA) Unit 5 Spring 2012 2 / 39

Heap-Based Solutions

First idea: Use a size-k max-heap

Second idea: Use a size-n min-heap

CS 355 (USNA) Unit 5 Spring 2012 3 / 39



Algorithm Design

What algorithm design paradigms could we use to attack the selection
problem?

Reduction to known problem
What we just did!

Memoization/Dynamic Programming
Would need a recursive algorithm first. . .

Divide and Conquer
Like binary search — seems promising. What’s the problem?

CS 355 (USNA) Unit 5 Spring 2012 4 / 39

A better “divide”

Finding the element at a given position is tough.

But find the position of a given element is easy!

Idea: Pick an element (the pivot), and sort around it.

CS 355 (USNA) Unit 5 Spring 2012 5 / 39

partition(A)

Input: Array A of size n. Pivot is in A[0].
Output: Index p such that A[p] holds the pivot, and
A[a] ≤ A[p] < A[b] for all 0 ≤ a < p < b < n.

1 i := 1

2 j := n -1

3 wh i l e i <= j do
4 i f A[i] <= A [0] then
5 i := i + 1

6 e l s e i f A[j] > A[0] then
7 j := j - 1

8 e l s e
9 swap (A[i], A[j])

10 end wh i l e
11 swap (A[0], A[j])

12 r e tu rn j

CS 355 (USNA) Unit 5 Spring 2012 6 / 39



Analysis of partition

Loop Invariant: Everything before A[i ] is ≤ the pivot;
everything after A[j ] is greater than the pivot.

Running time: Consider the value of j − i .

CS 355 (USNA) Unit 5 Spring 2012 7 / 39

Choosing a Pivot

The choice of pivot is really important!

Want the partitions to be close to the same size.

What would be the very best choice?

Initial (dumb) idea: Just pick the first element:

choosePivot1(A)

Input: Array A of length n
Output: Index of the pivot element we want

1 r e tu rn 0

CS 355 (USNA) Unit 5 Spring 2012 8 / 39

The Algorithm

quickSelect1(A,k)

Input: Array A of length n, and integer k
Output: Element at position k in the sorted array

1 swap (A[0], A[choosePivot1(A)])

2 p := partition(A)

3 i f p = k then
4 r e tu rn A[p]

5 e l s e i f p < k then
6 r e tu rn quickSelect1(A[p+1..n-1], k-p-1)

7 e l s e i f p > k then
8 r e tu rn quickSelect1(A[0..p-1], k)

CS 355 (USNA) Unit 5 Spring 2012 9 / 39



QuickSelect: Initial Analysis

Best case:

Worst case:

CS 355 (USNA) Unit 5 Spring 2012 10 / 39

Average-case analysis

Assume all n! permutations are equally likely.
Average cost is sum of costs for all permutations, divided by n!.

Define T (n, k) as average cost of quickSelect1(A,k):

T (n, k) = n +
1

n




k−1∑

p=0

T (n − p − 1, k − p − 1) +
n−1∑

p=k+1

T (p, k)




See the book for a precise analysis, or. . .

CS 355 (USNA) Unit 5 Spring 2012 11 / 39

Average-Case of quickSelect1

First simplification: define T (n) = maxk T (n, k)

The key to the cost is the position of the pivot.

There are n possibilities, but can be grouped into:

Good pivots: The position p is between n/4 and 3n/4.
Size of recursive call:

Bad pivots: Position p is less than n/4 or greater than 3n/4
Size of recursive call:

Each possibility occurs 1
2 of the time.

CS 355 (USNA) Unit 5 Spring 2012 12 / 39



Average-Case of quickSelect1

Based on the cost and the probability of each possibility, we have:

T (n) ≤ n +
1

2
T

(
3n

4

)
+

1

2
T (n)

(Assumption: every permutation in each partition is also equally likely.)

CS 355 (USNA) Unit 5 Spring 2012 13 / 39

Drawbacks of Average-Case Analysis

To get the average-case we had to make some BIG assumptions:

Every permutation of the input is equally likely

Every permutation of each half of the partition is still equally likely

The first assumption is actually false in most applications!

CS 355 (USNA) Unit 5 Spring 2012 14 / 39

Randomized algorithms

Randomized algorithms use a source of random numbers
in addition to the given input.

AMAZINGLY, this makes some things faster!

Idea: Shift assumptions on the input distribution
to assumptions on the random number distribution.
(Why is this better?)

Specifically, assume the function random(n) returns an integer between
0 and n-1 with uniform probability.

CS 355 (USNA) Unit 5 Spring 2012 15 / 39



Randomized quickSelect

We could shuffle the whole array into a randomized ordering, or:

1 Choose the pivot element randomly:

choosePivot2(A)

1 r e tu rn random(n)

2 Incorporate this into the quickSelect algorithm:

quickSelect2(A)

1 swap (A[0], A[choosePivot2(A)])

2 ...

CS 355 (USNA) Unit 5 Spring 2012 16 / 39

Analysis of quickSelect2

The expected cost of a randomized algorithm is the probability of each
possibility, times the cost given that possibility.

We will focus on the expected worst-case running time.

Two cases: good pivot or bad pivot. Each occurs half of the time. . .
The analysis is exactly the same as the average case!

Expected worst-case cost of quickSelect2 is Θ(n).
Why is this better than average-case?

CS 355 (USNA) Unit 5 Spring 2012 17 / 39

Do we need randomization?

Can we do selection in linear time without randomization?

Blum, Floyd, Pratt, Rivest, and Tarjan figured it out in 1973.

But it’s going to get a little complicated. . .

CS 355 (USNA) Unit 5 Spring 2012 18 / 39



Median of Medians

Idea: Develop a divide-and-conquer algorithm for choosing the pivot.

1 Split the input into m sub-arrays

2 Find the median of each sub-array

3 Look at just the m medians, and take the median of those

4 Use the median of medians as the pivot

This algorithm will be mutually recursive with the selection algorithm.
Crazy!

CS 355 (USNA) Unit 5 Spring 2012 19 / 39

Note:

q is a parameter, not part of the input. We’ll figure it out next.

quickSelect3(A,k) finds the element at position k in the sorted
array and re-arranges A so that A[k] is that element.

choosePivot3(A)

1 m := floor(n/q)

2 f o r i from 0 to m-1 do
3 // Find median of next group, move to front
4 quickSelect3(A[i*q..(i+1)*q-1], floor(q/2))

5 swap(A[i], A[i*q + floor(q/2)])

6 end f o r
7 // Find the median of medians
8 quickSelect3(A[0..m-1], floor(m/2))

9 r e tu rn floor(m/2)

CS 355 (USNA) Unit 5 Spring 2012 20 / 39

Worst case of choosePivot3(A)

Assume all array elements are distinct.

Question: How unbalanced can the pivoting be?

Chosen pivot must be greater than bm/2c medians.

Each median must be greater than bq/2c elements.

Since m = bn/qc, the pivot must be greater than (and less than)
approximately ⌈

n

2q

⌉
·
⌈q

2

⌉

elements in the worst case.

CS 355 (USNA) Unit 5 Spring 2012 21 / 39



Worst-case example, q = 3

A = [13, 25, 18, 76, 39, 51, 53, 41, 96, 5, 19, 72, 20, 63, 11]

Divide into size-q subarraysFind median of each subarrayFind median
of medians

medians→
13 76 53 5 20

25 39 41 19 63

18 51 96 72 11

13 39 41 5 11

18 51 53 19 20

25 76 96 72 63

13 5 11 39 41

18 19 20 51 53

25 72 63 76 96

CS 355 (USNA) Unit 5 Spring 2012 22 / 39

Aside: “At Least Linear”

Definition

A function f (n) is at least linear if and only if f (n)/n is non-decreasing
(for sufficiently large n).

Any function that is Θ(nc(log n)d) with c ≥ 1 is “at least linear”.

You can pretty much assume that any running time that is Ω(n) is
“at least linear”.

Important consequence: If T (n) is at least linear, then
T (m) + T (n) ≤ T (m + n) for any positive-valued variables n and m.

CS 355 (USNA) Unit 5 Spring 2012 23 / 39

Analysis of quickSelect3

Since quickSelect3 and choosePivot3 are mutually recursive, we
have to analyze them together.

Let T (n) = worst-case cost of quickSelect3(A,k)

Let S(n) = worst-case cost of selectPivot3(A)

T (n) =

S(n) =

Combining these, T (n) =

CS 355 (USNA) Unit 5 Spring 2012 24 / 39



Choosing q

What if q is big? Try q = n/3.

What if q is small? Try q = 3.

CS 355 (USNA) Unit 5 Spring 2012 25 / 39

Choosing q

What about q = 5?

CS 355 (USNA) Unit 5 Spring 2012 26 / 39

QuickSort

QuickSelect is based on a sorting method developed by Hoare in 1960:

quickSort1(A)

Input: Array A of size n
Output: The array is sorted in-place.

1 i f n > 1 then
2 swap (A[0], A[choosePivot1(A)])

3 p := partition(A)

4 quickSort1(A[0..p-1])

5 quickSort1(A[p+1..n-1])

6 end i f

CS 355 (USNA) Unit 5 Spring 2012 27 / 39



QuickSort vs QuickSelect

Again, there will be three versions depending on how the pivots are
chosen.

Crucial difference: QuickSort makes two recursive calls

Best-case analysis:

Worst-case analysis:

We could ensure the best case by using quickSelect3 for the
pivoting.
In practice, this is too slow.

CS 355 (USNA) Unit 5 Spring 2012 28 / 39

Average-case analysis of quickSort1

Of all n! permutations, (n − 1)! have pivot A[0] at a given position i .

Average cost over all permutations:

T (n) =
1

n

n−1∑

i=0

(
T (i) + T (n − i − 1)

)
+ Θ(n), n ≥ 2

Do you want to solve this directly?

Instead, consider the average depth of the recursion.
Since the cost at each level is Θ(n), this is all we need.

CS 355 (USNA) Unit 5 Spring 2012 29 / 39

Average depth of recursion for quickSort1

D(n) = average recursion depth for size-n inputs.

H(n) =

{
0, n ≤ 1

1 + 1
n

∑n−1
i=0 max

(
H(i),H(n − i − 1)

)
, n ≥ 2

We will get a good pivot (n/4 ≤ p ≤ 3n/4) with probability 1
2

The larger recursive call will determine the height (i.e., be the “max”)
with probability at least 1

2 .

CS 355 (USNA) Unit 5 Spring 2012 30 / 39



Summary of QuickSort analysis

quickSort1: Choose A[0] as the pivot.
I Worst-case: Θ(n2)
I Average case: Θ(n log n)

quickSort2: Choose the pivot randomly.
I Worst-case: Θ(n2)
I Expected case: Θ(n log n)

quickSort3: Use the median of medians to choose pivots.
I Worst-case: Θ(n log n)

CS 355 (USNA) Unit 5 Spring 2012 31 / 39

Sorting so far

We have seen:

Quadratic-time algorithms:
BubbleSort, SelectionSort, InsertionSort

n log n-time algorithms:
HeapSort, MergeSort, QuickSort

O(n log n) is asymptotically optimal in the comparison model.

So how could we do better?

CS 355 (USNA) Unit 5 Spring 2012 32 / 39

BucketSort

BucketSort is a general approach, not a specific algorithm:

1 Split the range of outputs into k groups or buckets

2 Go through the array, put each element into its bucket

3 Sort the elements in each bucket (perhaps recursively)

4 Dump sorted buckets out, in order

Notice: No comparisons!

CS 355 (USNA) Unit 5 Spring 2012 33 / 39



countingSort(A,k)

Input: Integer array A of length n, and integer k such that every A[i ]
satisfies 0 ≤ A[i ] < k .
Output: A gets sorted.

1 C := new ar ray of size k

2 f o r i from 0 to k do
3 C[i] := 0

4 f o r i from 0 to n-1 do
5 C[A[i]] := C[A[i]] + 1

6 f o r i from 1 to k-1 do
7 C[i] := C[i] + C[i-1]

8 B := copy(A)

9 f o r i from n-1 down to 0 do
10 C[B[i]] := C[B[i]] - 1

11 A[C[B[i]]] := B[i]

12 end f o r

CS 355 (USNA) Unit 5 Spring 2012 34 / 39

Analysis of CountingSort

Time:

Space:

CS 355 (USNA) Unit 5 Spring 2012 35 / 39

Stable Sorting

Definition

A sorting algorithm is stable if elements with the same key stay in the
same order.

Quadratic algorithms and MergeSort are easily made stable

QuickSort will require extra space to do stable partition.

CountingSort is stable.

CS 355 (USNA) Unit 5 Spring 2012 36 / 39



radixSort(A,d,B)

Input: Integer array A of length n, and integer d and k such that every
A[i ] has d digits A[i ] = xd−1xd−2 · · · x0, to the base B.
Output: A gets sorted.

1 f o r i from 0 to d-1 do
2 // Sort by the xi ’s
3 countingSort(A,B) by every xi

Works because CountingSort is stable!

Analysis:

CS 355 (USNA) Unit 5 Spring 2012 37 / 39

Summary of Sorting Algorithms

Every algorithm has its place and purpose!

Algorithm Analysis In-place? Stable?

SelectionSort Θ(n2) best and worst yes yes
InsertionSort Θ(n) best, Θ(n2) worst yes yes
HeapSort Θ(n log n) best and worst yes no
MergeSort Θ(n log n) best and worst no yes
QuickSort Θ(n log n) best, Θ(n2) worst yes no
CountingSort Θ(n + k) best and worst no yes
RadixSort Θ(d(n + k)) best and worst yes yes

CS 355 (USNA) Unit 5 Spring 2012 38 / 39

Unit 5 Summary

Selection problem

Partition

quickSelect and quickSort

Average-case analysis

Randomized algorithms and analysis

Median of medians

Non-comparison based sorting

BucketSort, CountingSort, RadixSort

Stable sorting

CS 355 (USNA) Unit 5 Spring 2012 39 / 39


