
SI 413 Fall 2012: Homework 8

Your name:

Due: Friday, 26 October, before class

Instructions: Review the course honor policy for written
homeworks.

This cover sheet must be the front page of what you hand in.
Fill out the left column in the table to the right after we go
over each problem in class, according to the rubric below.

This rubric is also on the website, in more detail, under
“Other Stuff”→“Grading Rubrics”.

Make sure all problems are submitted IN ORDER.

• 5: Solution is completely correct, concisely presented,
and neatly written.
• 4: The solution is mostly correct, but one or two minor

details were missed, or the presentation could be more
concise.
• 3: The main idea is correct, but there are some signifi-

cant mistakes. The presentation is somewhat sloppy or
confused.
• 2: A complete effort was made, but the result is mostly

incorrect. There may be some basic misunderstandings
of the topic or the problem.
• 1: The beginning of an attempt was made, but the work

is clearly incomplete.
• 0: Not submitted.

Comments or suggestions about this homework:

Comments or suggestions about the course so far:

Citations (other students, websites, . . . ):

Problem Self-assessment Final assessment

1

2

3

4

1



Use a separate sheet of paper for your answers! Everything should be submitted in one packet, all printed out for
me to see.

1 Scope Tree

a) Draw the scope tree for the following program:

1 def account(a):

2 def withdraw(x):

3 if a < x:

4 return False

5 else:

6 a = a - x

7 return True

8 return withdraw # Notice a function is being returned!

9

10 var A = account (10)

11 var B = account (12)

12

13 print A(11)

14 print B(11)

b) Draw the scope tree for the following program:

1 int x = 10;

2 int i = 5;

3

4 int foo(x) {

5 if (x == i) {

6 return 3;

7 }

8 else {

9 int i = x - 1;

10 int j = foo(i);

11 return 3 * j;

12 }

13 }

14

15 cout << foo (3) << endl;

2



2 Lexical scope

Consider the following SPL code, which we will imagine is lexically scoped:

1 new counter := lambda start {

2 new increment := lambda by {

3 start := start + by;

4 ret := start;

5 };

6 ret := increment;

7 };

8 new A := counter @ 0;

9 new B := counter @ 5;

10 write A@0;

11 write B@0;

12 write A@6;

Draw all the frames and links that result after executing this program. See the reading assigned from Unit 6 for exactly
how these should be drawn, particularly Section 3.2.3 of SICP.

In particular, every variable name that refers to a function should point to a closure, which is represented by a pair of
circles, pointing to the referencing environment and the function definition, respectively. (You do NOT have to write out
the complete body of every function.)

3

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-21.html#%_sec_3.2.3


3 Pass by what?

Here is a small SPL program with a single function that gets called twice. (Not that it matters, but you may assume
lexical scoping here.)

1 new a := 20;

2 new b := 10

3

4 new foo := lambda x {

5 x := x + x;

6 ret := x * b;

7 }

8

9 write foo@a;

10 write a;

11 write foo@b;

12 write b;

Clearly four numbers will get printed by this piece of code. Tell me what those four numbers will be under:

a) Pass by value

b) Pass by reference

c) Pass by value/result

4 Value/result example

In C++, function parameters that are specified with an ampersand, like the a in

1 void foo(int& a);

are passed by reference. In class, we saw a different kind of parameter passing mode called pass by value/result. Write a
small C++ program demonstrating that reference parameters (with ampersands) really are passed by reference and not
by value/result. That is, your program should do something different in each of these parameter passing modes.

As always, I want you to come up with your own examples! You can work together on homeworks, but the examples you
turn in should be unique.

4


	Scope Tree
	Lexical scope
	Pass by what?
	Value/result example

