
SI413: Programming Languages and
Implementations

MIDN Kevin Lees, USN

MIDN Alek Ogden, USN

COURSE OVERVIEW: This course
examines basic concepts underlying
the design of modern programming
languages: types, control structures,
abstraction mechanisms, inheritance,
and constructs for programming. This
course will include programming
assignments in several languages.

Language: ADA
LANGUAGE HISTORY

• Developed for the DoD in 1980s by
CII Honeywell Bull

• DoD Standard Language 1983-1997
• Versions: Ada83, Ada95, Ada05

Strengths
• Interoperability with Other

Languages
• Concurrency Support
• Real-Time Support
• Safety-Critical Support
• Reusability

with Ada.Text_IO; use Ada.Text_IO; procedure Hello is begin Put_Line("Hello, world!"); end Hello;

ADA HELLO WORLD
with Ada.Text_IO;
use Ada.Text_IO;
 procedure Hello is
 begin
 Put_Line("Hello, world!");
 end Hello;

Applications
Ada has a set of unique technical
features that make it highly effective
for use in large, complex and safety-
critical projects.

F-15 & F-22 use Ada

ISS uses Ada
CIWS uses Ada

SI413: Programming Languages and Implementation

Overview

Features

Code Examples Cool Stuff

• Written by Brian Fox for the GNU Project in 1989
• BASH stands for Bourne Again Shell
• BASH is a shell scripting language, perfect for writing
command line programs
• Huge amount of online support
• Used to easily automate complex series of commands
for easy reuse

• No explicit types
• Supports arrays: no size declaration required
• Redirect stdin and stdout to files
• Flexible parameter passing with functions
• Extensive string manipulation

•tr command
• Tight integration with operating system

• Commands executed on the command line can be
executed in the shell script

• Variables global unless declared otherwise
• Read and write to sockets
• Process substitution
• Multifunctional test command
• Debugging: #!/bin/bash –x
• Can execute most Bourne shell scripts without
modification
• Doesn’t support floating point math
• Only supports 1-D arrays

diff <(find dir1) <(find dir2)

if [$file1 -nt $file2]

Find difference between
the contents of 2
directories

Checks if file1 has been
modified more recently than
file2

#!/bin/bash
echo Hello World

Hello world script Gotchas

• Use of whitespace in variable assignments
• Mixing up –eq and =
• Assuming uninitialized variables are zero

This course examines basic concepts underlying the design of modern

programming languages: types, control structures, abstraction mechanisms,

inheritance, and constructs for programming. This course will include

programming assignments in several languages

What brain**ck has been used for:

Self interpreters!

>>>+[[-]>>[-]++>+>+++++++[<++++>>++<-

]++>>+>+>+++++[>++>++++++<<-]+>>>,<++[[>[-

>>]<[>>]<<-]<[<]<+>>[>]>[<+>-[[<+>-]>]<[[[-]<]++<-

[<+++++++++>[<->-]>>]>>]]<<

]<]<[[<]>[[>]>>[>>]+[<<]<[<]<+>>-]>[>]+[-

>>]<<<<[[<<]<[<]+<<[+>+<<-[>-->+<<-[> +<[>>+<<-

]]]>[<+>-]<]++>>--

>[>]>>[>>]]<<[>>+<[[<]<]>[[<<]<[<]+[-<+>>-

[<<+>++>- [<->[<<+>>-]]]<[>+<-

]>]>[>]>]>[>>]>>]<<[>>+>>+>>]<<[-

>>>>>>>>]<<[>.>>>>>>>]<<[>-

>>>>>]<<[>,>>>]<<[>+>]<<[+<<]<]

[Daniel B Cristofani (cristofdathevanetdotcom)

http://www.hevanet.com/cristofd/brainfuck/]

Hello world!

>+++++++++[<++++++++>-]<.>+++++++[<++++>-

]<+.+++++++..+++.>>>++++++++[<++++>-]

<.>>>++++++++++[<+++++++++>-]<---.<<<<.+++.------

.--------.>>+.

Original Distribution

SI 413: Programming Languages and Implementation

Creator:

Urban Muller

Other uses:

Created by:

Brandon Tinkham

William McCrone

SI 413: Programming Languages and Implementation

SI 413: Programming Languages and
Implementation

This course examines basic concepts
underlying the design of modern programming
languages: types, control structures,
abstraction mechanisms, inheritance, and
constructs for programming. This course will
include programming assignments in several
languages.

The Course Fortran

Designed by John Backus
 and his IBM team in 1957. It
was the first high level assembly
language and is still used today,
mostly in the scientific
community.

You will learn the
skills necessary to
quickly learn and
begin programming in
any new language
you may encounter.

During the semester you will become familiar
with how a programming language works
and how you can write and modify your own
language.

Fortran is still used today,
primarily by scientists,
especially within the
astrophysics community.
This is because Fortran is
good at handling math and
numbers.

Fortran has some downsides that keep it from being mainstream.
Input and output are incredibly difficult to format if you want
anything other than simple read/write. Also, two dimensional
arrays or stored differently than in C++, so you have to be
mindful that while they have similar syntax, array calls mean
entirely different things in Fortran.

This course examines basic concepts underlying the design of modern programming languages:
types, control structures, abstraction mechanisms, inheritance, and constructs for programming.
This course will include programming assignments in several languages.

Some languages used
Imperative: Ada, C
Object-Oriented: Java, C++
Functional: Haskell, Lisp
Scripting: Bash, Perl
Logic-based: Prolog

Imperative programming is a list of step-by-step
instructions for the program to follow in order to
execute. The programmer tells the computer exactly
how to solve the problem. In functional programming,
the programmer defines functions that are very similar to
mathematical functions , defining what is computed, not
how. For example, adding 1 to each element of a list or
array is very different in a functional vs imperative
language.

IMPERATIVE (C)
int x = 0;

while(x < arraySize){

 array[x] = array[x] + 1;

 x = x + 1;

}

FUNCTIONAL (Haskell)
map (1+)[LIST]

Ethan Panal and Taylor Cooper

• J is a mathematical language based on the APL
language and invented by Kenneth Iverson and
Roger Hui

• J language is terse but powerful
• J is used by several corporations such as Hewlett

Packard and Intel

This course examines basic concepts underlying the design of modern programming languages: types,
control structures, abstraction mechanisms, inheritance, and constructs for programming. This course will
include programming assignments in several languages.

• Array based programming of J allows for loopless code.
• Verbs are short rules that are applied to an array from right to left.
• Nouns are objects such as integers, that verbs operate on.
• There are two kinds of verbs, monads and dyads. Dyads have

arguments before and after the verb while monads are only followed
by a noun.

• Monads and Dyads change the meaning of verbs which allow for
more ways objects/nouns in arrays can be manipulated.
 J Term

Other Language

Term/Concept

Verb Function or operator

Noun
Object or variable or

constant

Copula Assignment

Punctuation Separator

Adverb n/a

Conjuction n/a

Sentence Executable unit

Table from “A Casual J Tutorial”
http://jeffzellner.com/miidaj/

SI 413: Programming Languages
and Implementation

This course examines basic concepts underlying the
design of modern programming languages: types, control

structures, abstraction mechanisms, inheritance, and
constructs for programming. This course will include

programming assignments in several languages.

OCAML – A functional paradigm programming language that combines
object oriented and imperative techniques with static typing to ensure strict
type safety. Major Uses- MLDonkey p2p client, Airbus A340 Control Software
Did you know: OCAML is an abbreviation for Objective Categorical Abstract
Machine Language?

Syntax
Semantics

Smalltalk
SI413 – Programming Languages
MIDN La’Shaundra Collins, USN

 MIDN Brian Real, USN

Overview
Smalltalk is a programming language based on
message passing, dynamic strong typing,
reflection, and object orientation.

 Messages and Methods
Message: which action to perform

Method: how to carry out the action

 Features
 - Small and uniform language

 - Large library of reusable classes

 - Advanced development tools

aWorkstation accept: aPacket

aMonster eat: aCookie

accept: aPacket

 (aPacket isAddressedTo: self)

 ifTrue:[

 Transcript show:

 'A packet is accepted by the Workstation ',

 self name asString]

 ifFalse: [super accept: aPacket]

Smalltalk C++ Java

Object Model Pure Hybrid Hybrid

Garbage
Collection

Automatic Manual Automatic

Inheritance Single Multiple Single

Types Dynamic Static Static

Reflection Fully reflective Introspection Introspection

Concurrency
Semaphores,

Monitors
Some libraries Monitors

Modules
Categories,

Namespaces
Namespaces Packages

Smalltalk vs. C++ vs. Java

