
Tutorial 3: Structs and Symbols and
Predicates (oh my!)

CS 135 Fall 2007

September 26-28, 2007

Tutorial this week attempts to cover most of the material from lecture
module 3 (”New Types of Data”) in preparation for your first midterm. The
pace may be a little quicker than previous weeks, so be prepared, and be
sure to work out problems on your own and check the solutions when they
are posted on Friday afternoon. Good luck on your first exam!

Remember the new first step in the design recipe, Data Analysis and
Design. It’ll be necessary for most of the examples here.

1 Dates

A simple way to represent a date in some unspecified year is by a pair of
numbers for the month and the day. The following functions should work
with dates specified in this way.

1.1 Comparison

Write a function before? which consumes two dates and produces true iff
the first date occurs before the second one (in the same year).

1.2 ’Tis what season?

Write a function season which consumes a single date and produces a symbol
for what season that date is in (one of ’fall, ’winter, ’spring, or ’summer).
For the purposes of this question, say fall is from September 23 to December

1



21, winter is from December 22 to March 19, spring is from March 20 to June
19, and Summer is from June 20 to September 22.

1.3 Sequential order

Write a function in-order? which consumes three dates and returns true
iff they occur in that order — that is, starting at the first date and moving
forward in time, the second date occurs before the third date does. So for
example the dates September 20, January 4, March 10 are in order, but the
dates August 15, May 29, December 12 are not. For simplicity, you may
assume all three dates given are distinct.

2 Numbers with infinity

Although they have many nice properties, the numbers represented by Scheme
do have the limitation that they are finite. To overcome this limitation, de-
fine the symbols ’infty+ and ’infty- to be plus and minus infinity, re-
spectively. The following functions will deal with the mixed data type called
”unbounded” which is either a number or one of the two symbols for infinity.

2.1 Squaring

The square of positive or negative infinity is always positive infinity. Using
this fact, write a function square which consumes an ”unbounded” number
and produces that number squared.

2.2 Comparison

Now write two functions, less-than? and less-equal? which consume two
unbounded numbers and determine (respectively) if the first is less than or
less than or equal to the second.

2.3 Addition

Write a function sum which consumes two unbounded numbers and produces
their sum. Note that the sum of positive and negative infinity is undefined;
your function should produce the symbol ’undef in this case.

2



3 Weather readings

For the purposes of this tutorial, a weather reading consists of four pieces of
information: air temperature (in degrees Celcius), wind speed (in km/hr),
humidity (as a percentage), and an indication of whether or not precipitation
is currently falling from the sky.

3.1 Type of precipitation

This is entirely inaccurate, but assume that the type of precipitation which
falls depends only upon the air temperature, as follows: Under -1 degrees, it
will be snow, greater than 2 degrees it will be rain, and in between it will be
sleet. So write a function precip-type which consumes a weather reading
and produces a symbol indicating the type of precipitation which is falling
(one of ’snow, ’sleet, or ’rain), or the symbol ’none if no precipitation is
falling.

3.2 How does it feel?

In Canada, two measures are used to indicate how hot or cold it ”feels”
outside when the air temperature is not sufficient. These are called the
humidex and the wind chill. If the air temperature is T , the humidity is H
and the wind speed is V , then the wind chill Wand humidex U are calculated
as follows:

W = w1(T ) + w2(T )V 0.16

U = u1(T ) + u2(T )H

The functions w1, w2, u1 and u2 are coded in Scheme and given as follows:

(define (w1 T)

(+ 13.12

(* 0.6215 T)))

(define (w2 T)

(- (* 0.3965 T)

11.37))

(define (u1 T)

3



(- T

(* (/ 5 9) 10)))

(define (u2 T)

(* (/ 5 9)

6.112

(expt 10 (/ (* 7.5 T)

(+ 237.7 T)))

(/ 1 100)))

Now design and write a function feels-like which consumes a weather
reading and produces the temperature it ”feels like” according to the follow-
ing rules: If the air temperature is below 10 degrees, report the wind chill; if
it is above 20 degrees, report the humidex; and otherwise just report the air
temperature.

3.3 Lost data

Some weather data has been lost and we’re trying to recover it. We have
the actual air temperature and the temperature it ”felt like” at the time
(according to the function you just wrote), but the complete weather reading
has been lost.

So write a function recover-data which consumes the actual air tem-
perature and the temperature it ”felt like”, and produces a weather reading
which is consistent with those values. Note that there will always be some
values in the weather reading which you can’t determine; use the symbol
’unknown for these.

Also, some values wouldn’t make sense, such as a humidity less than 0 or
greater than 100, or a wind speed less than 0. If there is no weather reading
that could possibly be consistent with the values given, return the symbol
’impossible instead of a weather reading.

4


